EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The paper considers a second-order quasilinear elliptic equation with an integrable right-hand side. Restrictions on the structure of the equation are formulated in terms of the generalized 𝑁-function. Unlike the author’s previous works, there is no sign condition for the low-order term of the equation. In non-reflexive Musielak–Orlicz–Sobolev spaces in an arbitrary unbounded strictly Lipschitz domain, the existence of a renormalized solution to the Dirichlet problem of this equation is proven.

Авторлар туралы

L. Kozhevnikova

Sterlitamak branch of Ufa University of Science and Technology; Elabuga Institute of Kazan (Volga region) Federal University

Email: kosul@mail.ru
Sterlitamak, Russia; Elabuga, Russia

Әдебиет тізімі

  1. Gwiazda, P. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space / P. Gwiazda, I. Skrzypczaka, A. Zatorska-Goldstein // J. Differ. Equat. — 2018. — V. 264. — P. 341–377.
  2. Ait Khellou, M. Renormalized solution for nonlinear elliptic problems with lower order terms and 𝐿1 data in Musielak–Orlicz spaces / M. Ait Khellou, A. Benkirane // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2016. — V. 43, № 2. — P. 164–187.
  3. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with 𝐿1 data / M.S.B. Elemine Vall, T. Ahmedatt, A. Touzani, A. Benkirane // Bol. Soc. Paran. Mat. — 2018. — V. 36, suppl. 1. — P. 125—150.
  4. Ying, Li. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak– Orlicz spaces / Li Ying, Y. Fengping, Zh. Shulin // Nonlinear Analysis: Real World Applications. — 2021. — V. 61. — P. 1–20.
  5. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  6. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  7. Kozhevnikova, L.M., Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents, Sb. Math., 2019, vol. 210, no. 3, pp. 417–446.
  8. Kozhevnikova, L.M. On solutions of anisotropic elliptic equations with variable exponent and measure data / L.M. Kozhevnikova // Complex Variables and Elliptic Equations. — 2020. — V. 65, № 3. — P. 337–367.
  9. Kozhevnikova, L.M. On Solutions of Elliptic Equations with Variable Exponents and Measure Data in 𝑅𝑛 / L.M. Kozhevnikova // Differential Equations on Manifolds and Mathematical Physics, Dedicated to the Memory of Boris Sternin ; eds. V.M. Manuilov, A.S. Mishchenko, V.E. Nazaikinskii, B.-W. Schulze, W. Zhang. — Cham : Birkh¨auser, 2021. — P. 221–239.
  10. Kashnikova, A.P., Kozhevnikova, L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
  11. Nonlinear unilateral problems without sign condition in Musielak spaces / S.M. Douiri, A. Benkirane, M. Ait Khellou, Y. El Hadfi // Analysis and Mathematical Physics. — 2021. — V. 11, suppl. 66. — P. 1–26.
  12. Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and 𝐿1 / T. Ahmdatt, M.S.B. Elemine Vall, A. Benkirane, A. Touzani // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2017. — V. 44, suppl. 2. — P. 190–213.
  13. Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
  14. Benkirane, A. An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2013. — V. 20, № 1. — P. 57–75.
  15. Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces / Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi // J. Funct. Anal. — 2018. — V. 275, suppl. 9. — P. 2538–2571.
  16. Kozhevnikova, L.M. On solutions of nonlinear elliptic equations with 𝐿1-data in unbounded domains / L.M. Kozhevnikova // Lobachevskii J. Math. — 2023. — V. 44, № 5. — P. 1879–1901.
  17. Dunford, N. and Schwartz, J.T., Linear Operators, V. I: General Theory, New York, London: Interscience Publishers, 1958.
  18. Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. of the Royal Society of Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
  19. Benkirane, A. Variational inequalities in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2014. — V. 21, № 5. — P. 787–811.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).