OPERATOR-DIFFERENCE SCHEMES FOR SYSTEMS OF FIRST-ORDER INTEGRO-DIFFERENTIAL EQUATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Cauchy problem is considered for a system of two first-order integro-differential equations with memory in finite-dimensional Hilbert spaces, where the integral term contains a difference kernel. Such mathematical model is typical for nonstationary electromagnetic processes, taking into account the dispersion effects of the electric field. To obtain an approximate solution to the considered nonlocal problem, a transformation to a local Cauchy problem for a system of first-order equations is applied, based on approximating the difference kernel by a sum of exponentials. Two-level operator-difference schemes in Hilbert spaces are constructed and analyzed for stability.

About the authors

P. N Vabishchevich

Lomonosov Moscow State University; North Caucasus Federal University

Email: vab@cs.msu.ru
Moscow, Russia; Stavropol, Russia

References

  1. Dautray, К. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods / К. Dautray, J.-L. Lions. — Berlin : Springer, 2000. — 722 p.
  2. Evans, L.C. Partial Differential Equations / L.C. Evans. — Berkeley : American Mathematical Society, 2010. — 749 p.
  3. Gripenberg, G. Volterra Integral and Functional Equations / G. Gripenberg, S.-O. Londen, O. Staffans. — Cambridge : Cambridge University Press, 1990. — 725 p.
  4. Pru¨ss, J. Evolutionary Integral Equations and Applications / J. Pru¨ss. — Basel ; Boston : Birkha¨user, 1993. — 366 p.
  5. Ландау, Л.Д. Теоретическая физика : учеб. пособие для вузов : в 10 т. T. 8. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. — 4-е изд., стереотип. — М. : Физматлит, 2005. — 656 с.
  6. Knabner, P. Numerical Methods for Elliptic and Parabolic Partial Differential Equations / P. Knabner, L. Angermann. — New York etc. : Springer, 2003. — 439 p.
  7. Quarteroni, A. Numerical Approximation of Partial Differential Equations / A. Quarteroni, A. Valli. — Berlin : Springer, 1994. — 543 p.
  8. Chen, C. Finite Element Methods for Integrodifferential Equations / C. Chen, T. Shih. — World Scientific, 1998. — 292 p.
  9. Linz, P. Analytical and Numerical Methods for Volterra Equations / P. Linz. — Philadelphia : SIAM, 1985. — 240 p.
  10. Bohren, C.F. Absorption and Scattering of Light by Small Particles / C.F. Bohren, D.R. Huffman. — Wiley-VCH, 1983. — 544 p.
  11. Vabishchevich, P.N. Numerical solution of the Cauchy problem for Volterra integrodifferential equations with difference kernels / P.N. Vabishchevich // Appl. Num. Math. — 2022. — V. 174. — P. 177–190.
  12. Vabishchevich, P.N. Numerical-analytical methods for solving the Cauchy problem for evolutionary equations with memory / P.N. Vabishchevich // Lobachevskii J. Math. — 2023. — V. 44, № 10. — P. 4195–4204.
  13. Vabishchevich, P.N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory / P.N. Vabishchevich // J. Comput. Appl. Math. — 2023. — V. 422. — Art. 114887.
  14. Вабищевич, П.Н. Об устойчивости приближённого решения задачи Коши для некоторых интегродифференциальных уравнений первого порядка / П.Н. Вабищевич // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 2. — С. 142–149.
  15. Вабищевич, П.Н. Численное решение задачи Коши для интегро-дифференциального уравнения второго порядка / П.Н. Вабищевич // Дифференц. уравнения. — 2022. — Т. 58, № 7. — С. 912–920.
  16. Vabishchevich, P.N. Numerical solution of the heat conduction problem with memory / P.N. Vabishchevich // Computers & Mathematics with Applications. — 2022. — V. 118. — P. 230–236.
  17. Halanay, A. On the asymptotic behavior of the solutions of an integro-differential equation / A. Halanay // J. Math. Anal. Appl. — 1965. — V. 10, № 2. — P. 319–324.
  18. Braess, D. Nonlinear Approximation Theory / D. Braess. — Springer-Verlag, 1986. — 290 p.
  19. Самарский, А.А. Теория разностных схем / А.А. Самарский. — 3-е изд., испр. — М. : Наука, 1989. — 616 с.
  20. Samarskii, A.A. Difference Schemes with Operator Factors / A.A. Samarskii, P.P. Matus, P.N. Vabishchevich. — Dordrecht : Kluwer Academic Publishers, 2002. — 384 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).