ON WEAK SOLVABILITY OF MATHEMATICAL MODEL DESCRIBING THE MOTION OF POLYMER SOLUTIONS WITH MEMORY
- Авторлар: Zvyagin A.V1, Strukov M.I1
-
Мекемелер:
- Voronezh State University
- Шығарылым: Том 60, № 10 (2024)
- Беттер: 1422-1428
- Бөлім: BRIEF MESSAGES
- URL: https://journal-vniispk.ru/0374-0641/article/view/270544
- DOI: https://doi.org/10.31857/S0374064124100103
- EDN: https://elibrary.ru/JSZTMX
- ID: 270544
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
A. Zvyagin
Voronezh State University
Email: zvyagin.a@mail.ru
Russia
M. Strukov
Voronezh State University
Email: mixail.strukov12@gmail.com
Russia
Әдебиет тізімі
- Voitkunskii, Y.I., Amfilokhiev, V.B., and Pavlovskii, V.A., Equations of motion of a fluid, with its relaxation properties taken into account, Trudy Leningrad. Korablestr. Inst., 1970, vol. 69, pp. 19–26.
- Pavlovskii, V.A., Theoretical description of weak aqueous polymer solutions, Dokl. Akad. Nauk SSSR, 1971, vol. 200, pp. 809–812.
- Pukhnachev, V.V. and Frolovskaya, O.A., On the Voitkunskii–Amfilokhiev–Pavlovskii model of motion of aqueous polymer solutions, Proc. Steklov Inst. Math., 2018, vol. 300, pp. 168–181.
- Frolovskaya, O.A. Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions / O.A. Frolovskaya, V.V. Pukhnachev // Polymer. — 2018. — V. 10. — P. 684.
- Zvyagin, A.V., Weak solvability of the nonlinearly viscous Pavlovskii model, Russ. Math., 2022, vol. 66, no. 6, pp. 73–78.
- Zvyagin, A.V., Optimal control problem for a stationary model of low concentrated aqueous polymer solutions, Differ. Equat., 2013, vol. 49, no. 2, pp. 246–250.
- Zvyagin, A.V., Study of solvability of a thermoviscoelastic model describing the motion of weakly concentrated water solutions of polymers, Siberian Math. J., 2018, vol. 59, no. 5, pp. 843–859.
- Zvyagin, A.V. Attractors for model of polymer solutions motion / A.V. Zvyagin // Discrete Contin. Dyn. Syst. — 2018. — V. 38, № 12. — P. 6305–6325.
- Zvyagin, A.V., Investigation of the weak solubility of the fractional Voigt alpha-model, Izv. Math., 2021, vol. 85, no. 1, pp. 61–91.
- Zvyagin, A.V. and Kostenko, E.I., On the existence of feedback control for one fractional Voigt model, Differ. Equat., 2023, vol. 59, no. 12, pp. 1778–1783.
- Rivlin, R.S. Stress deformation relations for isotropic materials / R.S. Rivlin, J.L. Ericksen // Arch. Rational Mech. Anal. — 1955. — V. 4. — P. 323–425.
- Fursikov, A.V., Optimal Control of Distributed Systems. Theory and Applications, Providence: Amer. Math. Soc., 2000.
- Zvyagin, V.G. and Turbin, M.V., Matematicheskiye voprosy gidrodinamiki vyazkouprugikh sred (Mathematical Questions in the Hydrodynamics of Viscoelastic Media), Moscow: KRASAND URSS, 2012.
- Orlov, V.P. On mathematical models of a viscoelasticity with a memory/ V.P. Orlov, P.E. Sobolevskii // Differ. Integral Equat. — 1991. — V. 4. — P. 103–115.
- Zvyagin, V.G. and Dmitrienko, V.T., On weak solutions of a regularized model of a viscoelastic fluid, Differ. Equat., 2002, vol. 38, no. 12, pp. 1731–1744.
- DiPerna, R.J. Ordinary differential equations, transport theory and Sobolev spaces / R.J. DiPerna, P.L. Lions // Invent. Math. — 1989. — V. 98, № 3. — P. 511–547.
- Crippa, G. Estimates and regularity results for the diPerna–Lions flow / G. Crippa, C. de Lellis // J. Reine Angew. Math. — 2008. — V. 616. — P. 15–46.
- Crippa, G. The ordinary differential equation with non-Lipschitz vector fields / G. Crippa // Boll. Unione Mat. Ital. — 2008. — V. 1, № 2. — P. 333–348.
- Sadovskii, B.N., Limit-compact and condensing operators, Russ. Math. Surv., 1972, vol. 27, no. 1, pp. 85–155.
- Dmitrienko, V.T. and Zvyagin, V.G., Homotopy classification of a class of continuous mappings, Math. Notes, 1982, vol. 31, no. 5, pp. 404–410.
Қосымша файлдар
