Modulation of endothelial factors activity in human endothelial cells in influenza A(H1N1)pdm09 virus infection
- Authors: Marchenko V.A.1, Barashkova S.V.2, Zelinskaya I.A.3, Toropova Y.G.3, Ramsay E.S.1, Zhilinskaya I.N.1
-
Affiliations:
- FSBI «A.A. Smorodintsev Research Institute of Influenza» of the Ministry of Health of Russia
- SPB SBIH «K.A. Rauhfus Children’s Municipal Multi-Specialty Clinical Center of High Medical Technologies»
- FSBI «Almazov National Medical Research Centre» of the Ministry of Health of Russia
- Issue: Vol 66, No 3 (2021)
- Pages: 198-210
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/118214
- DOI: https://doi.org/10.36233/0507-4088-48
- ID: 118214
Cite item
Full Text
Abstract
Introduction. Influenza A virus infection can lead to endothelial dysfunction (ED), including apoptosis of endothelial cells and modulation of endothelial factor activities. Affected biochemical factors may include those playing important roles in vascular homeostasis. However, the effect of this pathogen on the expression pattern of key endothelial factors is still unknown.
The aim of this work was to study the expression of endothelial nitric oxide synthase (eNOS) and plasminogen activator inhibitor-1 (PAI-1, serpin E1) in the EA.hy926 endothelial cells. Research objectives: to assess expression of eNOS and PAI-1 in endothelial cells infected with influenza virus A(H1N1)pdm09, and to identify homologous fragments in structure of viral proteins and endothelial factors.
Material and methods. Cells were infected with influenza virus A/St. Petersburg/48/16 (H1N1)pdm09 and analyzed in dynamics in 6, 12, 18, 24, 48, and 72 hrs post infection (hpi). Detection of endothelial factors expression levels was performed by immunocytochemical method (ICC) using antibodies for eNOS and PAI-1 while quantitative assessment of expression levels was carried out by program Nis-Elements F3.2 («Nikon», Japan). The search for homologous sequences between viral proteins and eNOS and PAI-1 was performed by computer comparison. Sequences were analyzed as fragments 12 amino acid residues (aar) in length.
Results and discussion. eNOS expression in infected cells had decreased to 7.9% by 6 hpi (control was taken as 100%) to 3.3% at 72 hpi. PAI-1 expression varied significantly over the course of the experiment: by 6 hpi it had decreased to 49.6%, and to 43.2% by 12 hpi. Later PAI-1 levels were: 116.3% (18 hpi); 18.9% (24 hpi); 23.5% (48 hpi), and 35% (72 hpi).
Conclusion. These results indicate that influenza A infection of endothelial cells causes a significant decrease in eNOS expression, while modulating PAI-1 one. The described phenomenon can be used in the further development of directions of pathogenetic therapy of vascular complications of infection caused by this pathogen.
Full Text
##article.viewOnOriginalSite##About the authors
V. A. Marchenko
FSBI «A.A. Smorodintsev Research Institute of Influenza» of the Ministry of Health of Russia
Author for correspondence.
Email: vmarcenco@mail.ru
ORCID iD: 0000-0001-6870-3157
Vladimir A. Marchenko, Graduate Student, Research Assistant of Laboratory of Systemic Virology
197376, St. Petersburg
Russian FederationS. V. Barashkova
SPB SBIH «K.A. Rauhfus Children’s Municipal Multi-Specialty Clinical Center of High Medical Technologies»
Email: fake@neicon.ru
ORCID iD: 0000-0002-5618-4510
191036, St. Petersburg
Russian FederationI. A. Zelinskaya
FSBI «Almazov National Medical Research Centre» of the Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-1971-3444
197341, St. Petersburg
Russian FederationYa. G. Toropova
FSBI «Almazov National Medical Research Centre» of the Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-1629-7868
197341, St. Petersburg
Russian FederationE. S. Ramsay
FSBI «A.A. Smorodintsev Research Institute of Influenza» of the Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-7086-5825
197376, St. Petersburg
Russian FederationI. N. Zhilinskaya
FSBI «A.A. Smorodintsev Research Institute of Influenza» of the Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-0084-1323
197376, St. Petersburg
Russian FederationReferences
- Fukunaga S., Ishida C., Nakaoka A., Ito T. A case of acute kidney injury and disseminated intravascular coagulation associated with influenza B viral infection. CEN Case Rep. 2014; 4(1): 95–100. https://doi.org/10.1007/s13730-014-0147-9
- Watanabe T., Yoshikawa H., Abe Y., Yamazaki S., Uehara Y., Abe T. Renal involvement in children with influenza A virus infection. Pediatr. Nephrol. 2003; 18(6): 541–4. https://doi.org/10.1007/s00467- 003-1143-z 3. Smeeth L., Cook C., Thomas S., Hall A.J., Hubbard R., Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet. 2006; 367(9516): 1075–9. https://doi.org/10.1016/s0140-6736(06)68474-2
- Corrales-Medina V.F., Madjid M., Musher D.M. Role of acute infection in triggering acute coronary syndromes. Lancet Infect. Dis. 2010; 10(2): 83–92. https://doi.org/10.1016/s1473-3099(09)70331-7
- Drexler H. Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc. Res. 1999; 43(3): 572–9. https://doi.org/10.1016/ s0008-6363(99)00152-2
- Ludwig A., Lucero-Obusan C., Schirmer P., Winston C., Holodniy M. Acute cardiac injury events ≤30 days after laboratory-confirmed influenza virus infection among U.S. veterans, 2010–2012. BMC Cardiovasc. Disord. 2015; 15: 109. https://doi.org/10.1186/s12872- 015-0095-0
- Kwong J.C., Schwartz K.L., Campitelli M.A., Chung H., Crowcroft N.S., Karnauchow T., et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N. Engl. J. Med. 2018; 378(4): 345–53. https://doi.org/10.1056/nejmoa1702090
- Barnes M., Heywood A.E., Mahimbo A., Rahman B., Newall A.T., Macintyre C.R. Acute myocardial infarction and influenza: a meta-analysis of case–control studies. Heart. 2015; 101(21): 1738–47. https://doi.org/10.1136/heartjnl-2015-307691
- Warren-Gash C., Smeeth L., Hayward A.C. Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease: a systematic review. Lancet Infect. Dis. 2009; 9(10): 601–10. https://doi.org/10.1016/s1473-3099(09)70233-6
- Fagnoul D., Pasquier P., Bodson L., Ortiz J.A., Vincent J.L., De Backer D. Myocardial dysfunction during H1N1 influenza infection. J. Crit. Care. 2013; 28(4): 321–7. https://doi.org/10.1016/j. jcrc.2013.01.010
- Tseng G.S., Hsieh C.Y., Hsu C.T., Lin J.C., Chan J.S. Myopericarditis and exertional rhabdomyolysis following an influenza A (H3N2) infection. BMC Infect. Dis. 2013; 13: 283. https://doi. org/10.1186/1471-2334-13-283
- Lobo M.L., Taguchi ., Gaspar H.A., Ferranti J.F., de Carvalho W.B., Delgado A.F. Fulminant myocarditis associated with the H1N1 influenza virus: case report and literature review. Rev. Bras. Ter. Intensiva. 2014; 26(3): 321–6. https://doi.org/10.5935/0103-507x.20140046
- Lubrano V., Balzan S. Roles of LOX-1 in microvascular dysfunction. Microvasc. Res. 2016; 105: 132–140. https://doi.org/10.1016/j. mvr.2016.02.006
- Kwok C.S., Aslam S., Kontopantelis E., Myint P.K., Zaman M.J., Buchan I., et al. Influenza, influenza-like symptoms and their association with cardiovascular risks: a systematic review and meta-analysis of observational studies. Int. J. Clin. Pract. 2015; 69(9): 928–37. https://doi.org/10.1111/ijcp.12646
- Gliozzi M., Scicchitano M., Bosco F., Musolino V., Carresi C., Scarano F., et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int. J. Mol. Sci. 2019; 20(13): 3294. https://doi.org/10.3390/ ijms20133294
- Sessa W.C. eNOS at a glance. J. Cell. Sci. 2004; 117(Pt. 12): 2427– 9. https://doi.org/10.1242/jcs.01165
- Naseem K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects. Med. 2005; 26(1-2): 33–65. https://doi.org/10.1016/j. mam.2004.09.003
- Kubes P., Suzuki M., Granger D.N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA. 1991; 88(11): 4651–5. https://doi.org/10.1073/pnas.88.11.4651
- Ghosh A.K., Vaughan D.E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 2012; 227(2): 493–507. https://doi.org/10.1002/jcp.22783
- Марченко В.А., Барашкова С.В., Зелинская И.А., Торопова Я.Г., Сорокин Е.В., Жилинская И.Н. Моделирование гриппозной инфекции у половозрелых крыс стока Wistar. Вопросы вирусологии. 2020; 65(3): 159–66. https://doi.org/10.36233/0507-4088- 2020-65-3-159-166
- Burry R.W. Immunocytochemistry: a Practical Guide for Biomedical Research. New York: Springer; 2010.
- Taylor C.R., Levenson R.M. Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006; 49(4): 411–24. https://doi. org/10.1111/j.1365-2559.2006.02513.x
- Heiss C., Rodriguez-Mateos A., Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid. Redox Signal. 2015; 22(14): 1230–42. https://doi.org/10.1089/ars.2014.6158
- Lobo S.M., Watanabe A.S.A., Salomão M.L.M., Queiroz F., Gandolfi J.V., de Oliveira N.E., et al. Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J. Clin. Virol. 2019; 116: 62–8. https://doi.org/10.1016/j.jcv.2019.05.003
- Petrache I., Birukov K., Zaiman A.L., Crow M.T., Deng H., Wadgaonkar R., et al. Caspase dependent cleavage of myosin light chain kinase (MLCK) is involved om TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J. 2003; 17(3): 407–16. https://doi.org/10.1096/fj.02-0672com
- Petrache I., Crow M.T., Neuss M., Garcia J.G. Central involvement of Rho family GTPases in TNF-alpha mediated bovine pulmonary endothelial cell apoptosis. Biochem. Biophys. Res. Commun. 2003; 306(1): 244–9. https://doi.org/10.1016/s0006-291x(03)00945-8
- Digard P., Elton D., Bishop K., Medcalf E., Weeds A., Pope B. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J. Virol. 1999; 73(3): 2222–31. https://doi.org/10.1128/jvi.73.3.2222-2231.1999
- Wang S., Le T.Q., Kurihara N., Chida J., Cisse Y., Yano M., et al. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J. Infect. Dis. 2010; 202(7): 991–1001. https://doi.org/10.1086/656044
- Азарёнок А.А., Ляпина Л.А., Оберган Т.Ю., Харченко Е.П., Козлова Н.М., Жилинская И.Н. Изменение активности тканевого активатора плазминогена клеток эндотелия под воздействием вируса гриппа А и его поверхностных белков. Тромбоз, гемостаз, реология. 2014; (1): 3–8.
- Förstermann U., Sessa W.C. Nitric oxide synthases: regulation and function. Eur. Heart. J. 2012; 33(7): 829–37. https://doi. org/10.1093/eurheartj/ehr304
- Lubrano V., Balzan S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free Radic. Res. 2014; 48(8): 841– 8. https://doi.org/10.3109/10715762.2014.929122
- Pirillo A., Norata G.D., Catapano A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013; 2013: 152786. https://doi. org/10.1155/2013/152786
- Pritchard K.A. Jr., Ackerman A.W., Gross E.R., Stepp D.W., Shi Y., Fontana J.T., et al. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J. Biol. Chem. 2001; 276(21): 17621–4. https://doi. org/10.1074/jbc.c100084200
- Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: physiology, pathophysiology, pharmacology. Pharm. Rev. 1991; 43(2): 109–42.
- Ahmad R., Rasheed Z., Ahsan H. Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. Immunopharmacol. Immunotoxicol. 2009; 31(3): 388–96. https://doi.org/10.1080/08923970802709197
- Natarajan M., Konopinski R., Krishnan M., Roman L., Bera A., Hongying Z., et al. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 2015; 308(8): 673–83. https:// doi.org/10.1152/ajpcell.00367.2014
- Yasar Yildiz S., Kuru P., Toksoy Oner E., Agirbasli M. Functional stability of plasminogen activator inhibitor-1. Scientific World Journal. 2014; 2014: 858293. https://doi.org/10.1155/2014/858293
- Gando S., Levi M., Toh C. Disseminated intravascular coagulation. Nat. Rev. Dis. Primers. 2016; 2: 16037. https://doi.org/10.1038/ nrdp.2016.37
- Hallberg P., Smedje H., Eriksson N., Kohnke H., Daniilidou M., Öhman I., et al. Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival. EBioMedicine. 2019; 40: 595–604. https://doi.org/10.1016/j.ebiom.2019.01.041
Supplementary files
