Экспрессия интегринов β1, α4 и молекулы клеточной адгезии ICAM-1 в присутствии дезоксирибонуклеата натрия с железом комплекса (ДНК-Na-Fe) клетками МТ-4, трансформированными Т-лимфотропным вирусом человека 1 типа (Retroviridae: Orthoretrovirinae: Deltaretrovirus: Human T-lymphotropic virus type 1)
- Авторы: Калнина Л.Б.1, Селимова Л.М.1, Каплина Э.Н.2, Носик Д.Н.1
-
Учреждения:
- Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
- ЗАО ФП «Техномедсервис»
- Выпуск: Том 66, № 3 (2021)
- Страницы: 227-232
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://journal-vniispk.ru/0507-4088/article/view/118230
- DOI: https://doi.org/10.36233/0507-4088-57
- ID: 118230
Цитировать
Полный текст
Аннотация
Введение. Важная роль интегринов (ИГ) в возникновении и развитии онкологических процессов делает данные структуры удобными мишенями для разработки иммуномодулирующих терапевтических препаратов, оказывающих воздействие непосредственно на эти молекулы. Среди последних выделяются ИГ β1, α4 и рецептор клеточной адгезии ICAM-1 (intercellular adhesion molecule 1). Иммуномодуляторы способны посредством неспецифических механизмов изменять активность ИГ, что, однако, в ряде случаев может служить причиной снижения защитных функций иммунной системы и ухудшения состояния здоровья человека.
Цель исследования – установление влияния на выраженность клеточной экспрессии и характер метаболизма ИГ препарата дезоксирибонуклеат натрия с железом комплекс – ДРК-Na-Fe, используемого в Российской Федерации в качестве иммуномодулирующего средства, детали действия которого тем не менее изучены недостаточно.
Материал и методы. В работе использовали 2 варианта неопластической клеточной линии CD4+ Т-лимфоцитов, трансформированных Т-лимфотропным вирусом человека 1 типа (ТЛВЧ-1; human T-lymphotropic virus 1, HTLV-1) семейства Retroviridae, – МТ-4 (МТ-4/1 и МТ-4/2). Указанные варианты характеризовались различной выраженностью экспрессии белковых маркёров активации CD28 и CD38. После культивирования клеточной культуры в присутствии 500 мкг/мл ДНК-Na-Fe изучали уровни экспрессии ИГ β1 (CD29), α4 (CD49d) и ICAM-1 (CD54) методом проточной цитометрии.
Результаты. Практически все клетки обеих линий имели мембранные белки СD29+ (90,4% ± 4,5), CD54+ (97,9% ± 1,4), а также незначительное количество CD49d+ (1,9% ± 1,0). В присутствии препарата различий в экспрессии исследуемых белков на клеточной поверхности не наблюдалось.
Обсуждение. Степень экспрессии ИГ β1, α4 и ICAM-1 может служить одной из фенотипических характеристик клеток МТ-4. Полученные данные имеют существенное значение, так как особенности трансформации СD4+ T-лимфоцитов и их метаболизма при инфицировании ТЛВЧ-1 до настоящего времени недостаточно изучены.
Заключение. Результаты настоящей работы могут быть полезны как при установлении патогенеза заболеваний, вызываемых ТЛВЧ-1, некоторых видов злокачественных новообразований, так и для поиска новых специфически действующих фармакологических веществ, в т.ч. молекулярно-нацеленных (таргетных). Представляется, что итоги исследования помогут расширить существующие представления о маркёрах клеточной линии МТ-4.
Полный текст
Открыть статью на сайте журналаОб авторах
Л. Б. Калнина
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-2702-8578
123098, Москва
РоссияЛ. М. Селимова
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Автор, ответственный за переписку.
Email: lselim@mail.ru
ORCID iD: 0000-0003-3709-770X
Селимова Людмила Мидатовна, д-р биол. наук, ведущий научный сотрудник лаборатории противовирусных и дезинфекционных средств.
123098, Москва
РоссияЭ. Н. Каплина
ЗАО ФП «Техномедсервис»
Email: fake@neicon.ru
ORCID iD: 0000-0001-8540-5856
105318, Москва
РоссияД. Н. Носик
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0001-5757-5671
123098, Москва
РоссияСписок литературы
- Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010; 339(1): 269–80. https://doi.org/10.1007/s00441-009-0834-6
- Rehman A., Costin N.A. Integrins and cell metabolism: an intimate relationship impacting cancer. Int. J. Mol. Sci. 2017; 18(1): 189. https://doi.org/10.3390/ijms18010189
- Desgrosellier J.S., Cheresh D.A. Integrins in cancer: biological implication and therapeutic opportunities. Nat. Rev. Cancer. 2010; 10(1): 9–22. https://doi.org/10.1038/nrc2748
- Cooper J., Filippo G., Giancotti F.G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019; 35(3): 347–67. https://doi. org/10.1016/j.ccell.2019.01.007
- Mitroulis I., Alexaki V.A., Kourtzelis I., Ziogas A., Hajishengallis G., Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 2015; 147: 123–35. https://doi.org/10.1016/j.pharmthera.2014.11.008
- Беседнова Н.Н., Макаренкова И.Д., Федянина Л.Н., Авдеева Ж.И., Крыжановский С.П., Кузнецова Т.А., и др. Дезоксирибонуклеиновая кислота про- и эукариот в профилактике и терапии инфекционных болезней. Антибиотики и химиотерапия. 2018; 63(5-6): 52–67.
- Носик Д.Н., Носик Н.Н., Каплина Э.Н., Калнина Л.Б., Киселёва И.А., Кондрашина Н.Г., и др. Активность препарата «Ферровир» в отношении РНК- и ДНК-содержащих вирусов. Вопросы вирусологии. 2002; 47(3): 21–3.
- Селимова Л.М., Калнина Л.Б., Каплина Э.Н., Носик Д.Н. Влияние ферровира на экспрессию поверхностных маркёров активации клетками неопластической линии МТ-4. Клиническая лабораторная диагностика. 2017; 62(6): 355–9. https://doi. org/10.18821/0869-2084-2017-62-6-355-359
- Manns A., Hisada M., La Grenada L. Human T-lymphotropic virus type 1 infection. Lancet. 1999; 353(9168): 1951–8. https://doi. org/10.1016/s0140-6736(98)09460-4
- Nakamura T., Satoh K., Nakamura H., Fukushima N., Nishiura Y., Furuya T., et al. Role of integrin signaling activation on the development of human T cell leukemia virus-1 (HTLV-1)-associated myelopathy/ tropical spastic paraparesis: its relationship to HTLV-1-infected CD4(+) T cell transmigrating activity into the tissues. AIDS Res. Hum. Retroviruses. 2018; 34(4): 331–6. https://doi.org/10.1089/aid.2017.0261
- Glaría E., Valledor A.F. Roles of CD38 in the immune response to infection. Cells. 2020; 9(1): 228. https://doi.org/10.3390/cells9010228 12. Riley J.L., June C.H. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood. 2005; 105(1): 13–21. https://doi.org/10.1182/blood-2004-04-1596
- Janahú L.T.A., Da Costa C.A., Vallinoto A.C.R., Santana B.B., Ribeiro-Lima J., Santos-Oliveira J.R., et al. CD49d is upregulated in circulating T lymphocytes from HTLV-1-infected patients. Neuroimmunomodulation. 2020; 27(2): 113–22. https://doi. org/10.1159/000507086
- Tanaka Y., Fukudome K., Hayashi M., Takagi S., Yoshie O. Induction of ICAM-1 and LFA-3 by Tax1 of human T-cell leukemia virus type 1 and mechanism of down-regulation of ICAM-1 or LFA-1 in adult-T-cell-leukemia cell lines. Int. J. Cancer. 1995; 60(4): 554– 61. https://doi.org/10.1002/ijc.2910600421
Дополнительные файлы
