Structural Motifs and Spatial Structures of Helicase (NS3) and RNA-dependent RNA-polymerase (NS5) of a Flavi-like Kindia tick virus (unclassified Flaviviridae)

封面

如何引用文章

全文:

详细

Introduction. Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans.

The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV.

Materials and methods. The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages.

Results. Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs I–VI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins.

Conclusion. Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.

作者简介

A. Gladysheva

State Scientific Center of Virology and Biotechnology «Vector»; Novosibirsk National Research State University

Email: gladysheva_aa@vector.nsc.ru
ORCID iD: 0000-0002-9490-1939

Graduate student, Assistant, Department of Molecular Virology for Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Novosibirsk region, Koltsovo; 630090, Novosibirsk

A. Gladysheva

State Scientific Center of Virology and Biotechnology «Vector»

编辑信件的主要联系方式.
Email: gladysheva_av@vector.nsc.ru
ORCID iD: 0000-0002-7396-3954
SPIN 代码: 5214-3421
Scopus 作者 ID: 57194590629

Postgraduate student, Juniour Researcher, Department of Molecular Virology for Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Novosibirsk region, Koltsovo

V. Ternovoi

State Scientific Center of Virology and Biotechnology «Vector»

Email: tern@vector.nsc.ru
ORCID iD: 0000-0003-1275-171X

PhD, Leading Researcher, Department of Molecular Virology for Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Novosibirsk region, Koltsovo

V. Loktev

State Scientific Center of Virology and Biotechnology «Vector»; Novosibirsk National Research State University

Email: loktev@vector.nsc.ru
ORCID iD: 0000-0002-0229-321X

Dr. Sci. (Biol.), Professor, Head of the Department of Molecular Virology for Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Novosibirsk region, Koltsovo; 630090, Novosibirsk

参考

  1. Ternovoi V.A., Protopopova E.V., Shvalov A.N., Kartashov M.Yu., Bayandin R.B., Tregubchak T.V., et al. Complete coding genome sequence for a novel multicomponent Kindia tick virus detected from ticks collected in Guinea. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.04.11.036723
  2. Qin X.C., Shi M., Tian J.H., Lin X.D., Gao D.Y., He J.R., et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc. Natl Acad. Sci. USA. 2014; 111(18): 6744–9. https://doi.org/10.1073/pnas.1324194111
  3. Ladner J.T., Wiley M.R., Beitzel B., Auguste A.J., Dupuis A.P., Lindquist M.E., et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microbe. 2016; 20(3): 357–67. https://doi.org/10.1016/j.chom.2016.07.011
  4. Kholodilov I.S., Litov A.G., Klimentov A.S., Belova O.A., Polienko A.E., Nikitin N.A., et al. Isolation and characterisation of Alongshan virus in Russia. Viruses. 2020; 12(4): 362. https://doi.org/10.3390/v12040362
  5. Zhang X., Wang N., Wang Z., Liu Q. The discovery of segmented flaviviruses: implications for viral emergence. Curr. Opin. Virol. 2020; 40: 11–8. https://doi.org/10.1016/j.coviro.2020.02.001
  6. Kholodilov I.S., Belova O.A., Morozkin E.S., Litov A.G., Ivannikova A.Y., Makenov M.T., et al. Geographical and tick-dependent distribution of flavi-like Alongshan and Yanggou tick viruses in Russia. Viruses. 2021; 13(3): 458. https://doi.org/10.3390/v13030458
  7. Jia N., Liu H.B., Ni X.B., Bell-Sakyi L., Zheng Y.C., Song J.L., et al. Emergence of human infection with Jingmen tick virus in China: A retrospective study. EBioMedicine. 2019; 43: 317–24. https://doi.org/10.1016/j.ebiom.2019.04.004
  8. Ternovoy V.A., Gladysheva A.V., Sementsova A.O., Zaykovskaya A.V., Volynkina A.S., Kotenev E.S., et al. Detection of the RNA for new multicomponent virus in patients with Crimean-Congo hemorrhagic fever in southern Russia. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2020; 75(2): 192–34. https://doi.org/10.15690/vramn1192 (in Russian)
  9. Emmerich P., Jakupi X., von Possel R., Berisha L., Halili B., Günther S., et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infect. Genet. Evol. 2018; 65: 6–11. https://doi.org/10.1016/j.meegid.2018.07.010
  10. Gao X., Zhu K., Wojdyla J.A., Chen P., Qin B., Li Z., et al. Crystal structure of the NS3-like helicase from Alongshan virus. IUCrJ. 2020; 7(Pt. 3): 375–82. https://doi.org/10.1107/S2052252520003632
  11. Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42(W1): W320–4. https://doi.org/10.1093/nar/gku316
  12. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583–9. https://doi.org/10.1038/s41586-021-03819-2
  13. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25(13): 1605–12. https://doi.org/10.1002/jcc.20084
  14. Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596(7873): 590–6. https://doi.org/10.1038/s41586-021-03828-1
  15. Guo J.J., Lin X.D., Chen Y.M., Hao Z.Y., Wang Z.X., Yu Z.M., et al. Diversity and circulation of Jingmen tick virus in ticks and mammals. Virus Evol. 2020; 6(2): veaa051. https://doi.org/10.1093/ve/veaa051
  16. Du Pont K.E., McCullagh M., Geiss B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip. Rev RNA. 2022; 13(2): e1688. https://doi.org/10.1002/wrna.1688
  17. Dubankova A., Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antiviral Res. 2019; 169: 104536. https://doi.org/10.1016/j.antiviral.2019.104536
  18. Duan Y., Zeng M., Jiang B., Zhang W., Wang M., Jia R., et al. Flavivirus RNA-dependent RNA polymerase interacts with genome UTRs and viral proteins to facilitate flavivirus RNA replication. Viruses. 2019; 11(10): 929. https://doi.org/10.3390/v11100929
  19. Lu G., Gong P. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Virus Res. 2017; 234: 34–43. https://doi.org/10.1016/j.virusres.2017.01.020
  20. Potapova U., Feranchuk S., Leonova G., Belikov S. The rearrangement of motif F in the flavivirus RNA-directed RNA polymerase. Int. J. Biol. Macromol. 2018; 108: 990–8. https://doi.org/10.1016/j.ijbiomac.2017.11.009

补充文件

附件文件
动作
1. JATS XML

版权所有 © Gladysheva A.A., Gladysheva A.V., Ternovoi V.A., Loktev V.B., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».