Structural Motifs and Spatial Structures of Helicase (NS3) and RNA-dependent RNA-polymerase (NS5) of a Flavi-like Kindia tick virus (unclassified Flaviviridae)
- 作者: Gladysheva A.A.1,2, Gladysheva A.V.1, Ternovoi V.A.1, Loktev V.B.1,2
-
隶属关系:
- State Scientific Center of Virology and Biotechnology «Vector»
- Novosibirsk National Research State University
- 期: 卷 68, 编号 1 (2023)
- 页面: 7-17
- 栏目: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/125761
- DOI: https://doi.org/10.36233/0507-4088-142
- ID: 125761
如何引用文章
全文:
详细
Introduction. Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans.
The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV.
Materials and methods. The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages.
Results. Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs I–VI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins.
Conclusion. Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.
作者简介
A. Gladysheva
State Scientific Center of Virology and Biotechnology «Vector»; Novosibirsk National Research State University
Email: gladysheva_aa@vector.nsc.ru
ORCID iD: 0000-0002-9490-1939
Graduate student, Assistant, Department of Molecular Virology for Flaviviruses and Viral Hepatitis
俄罗斯联邦, 630559, Novosibirsk region, Koltsovo; 630090, NovosibirskA. Gladysheva
State Scientific Center of Virology and Biotechnology «Vector»
编辑信件的主要联系方式.
Email: gladysheva_av@vector.nsc.ru
ORCID iD: 0000-0002-7396-3954
SPIN 代码: 5214-3421
Scopus 作者 ID: 57194590629
Postgraduate student, Juniour Researcher, Department of Molecular Virology for Flaviviruses and Viral Hepatitis
俄罗斯联邦, 630559, Novosibirsk region, KoltsovoV. Ternovoi
State Scientific Center of Virology and Biotechnology «Vector»
Email: tern@vector.nsc.ru
ORCID iD: 0000-0003-1275-171X
PhD, Leading Researcher, Department of Molecular Virology for Flaviviruses and Viral Hepatitis
俄罗斯联邦, 630559, Novosibirsk region, KoltsovoV. Loktev
State Scientific Center of Virology and Biotechnology «Vector»; Novosibirsk National Research State University
Email: loktev@vector.nsc.ru
ORCID iD: 0000-0002-0229-321X
Dr. Sci. (Biol.), Professor, Head of the Department of Molecular Virology for Flaviviruses and Viral Hepatitis
俄罗斯联邦, 630559, Novosibirsk region, Koltsovo; 630090, Novosibirsk参考
- Ternovoi V.A., Protopopova E.V., Shvalov A.N., Kartashov M.Yu., Bayandin R.B., Tregubchak T.V., et al. Complete coding genome sequence for a novel multicomponent Kindia tick virus detected from ticks collected in Guinea. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.04.11.036723
- Qin X.C., Shi M., Tian J.H., Lin X.D., Gao D.Y., He J.R., et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc. Natl Acad. Sci. USA. 2014; 111(18): 6744–9. https://doi.org/10.1073/pnas.1324194111
- Ladner J.T., Wiley M.R., Beitzel B., Auguste A.J., Dupuis A.P., Lindquist M.E., et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microbe. 2016; 20(3): 357–67. https://doi.org/10.1016/j.chom.2016.07.011
- Kholodilov I.S., Litov A.G., Klimentov A.S., Belova O.A., Polienko A.E., Nikitin N.A., et al. Isolation and characterisation of Alongshan virus in Russia. Viruses. 2020; 12(4): 362. https://doi.org/10.3390/v12040362
- Zhang X., Wang N., Wang Z., Liu Q. The discovery of segmented flaviviruses: implications for viral emergence. Curr. Opin. Virol. 2020; 40: 11–8. https://doi.org/10.1016/j.coviro.2020.02.001
- Kholodilov I.S., Belova O.A., Morozkin E.S., Litov A.G., Ivannikova A.Y., Makenov M.T., et al. Geographical and tick-dependent distribution of flavi-like Alongshan and Yanggou tick viruses in Russia. Viruses. 2021; 13(3): 458. https://doi.org/10.3390/v13030458
- Jia N., Liu H.B., Ni X.B., Bell-Sakyi L., Zheng Y.C., Song J.L., et al. Emergence of human infection with Jingmen tick virus in China: A retrospective study. EBioMedicine. 2019; 43: 317–24. https://doi.org/10.1016/j.ebiom.2019.04.004
- Ternovoy V.A., Gladysheva A.V., Sementsova A.O., Zaykovskaya A.V., Volynkina A.S., Kotenev E.S., et al. Detection of the RNA for new multicomponent virus in patients with Crimean-Congo hemorrhagic fever in southern Russia. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2020; 75(2): 192–34. https://doi.org/10.15690/vramn1192 (in Russian)
- Emmerich P., Jakupi X., von Possel R., Berisha L., Halili B., Günther S., et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infect. Genet. Evol. 2018; 65: 6–11. https://doi.org/10.1016/j.meegid.2018.07.010
- Gao X., Zhu K., Wojdyla J.A., Chen P., Qin B., Li Z., et al. Crystal structure of the NS3-like helicase from Alongshan virus. IUCrJ. 2020; 7(Pt. 3): 375–82. https://doi.org/10.1107/S2052252520003632
- Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42(W1): W320–4. https://doi.org/10.1093/nar/gku316
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583–9. https://doi.org/10.1038/s41586-021-03819-2
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25(13): 1605–12. https://doi.org/10.1002/jcc.20084
- Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596(7873): 590–6. https://doi.org/10.1038/s41586-021-03828-1
- Guo J.J., Lin X.D., Chen Y.M., Hao Z.Y., Wang Z.X., Yu Z.M., et al. Diversity and circulation of Jingmen tick virus in ticks and mammals. Virus Evol. 2020; 6(2): veaa051. https://doi.org/10.1093/ve/veaa051
- Du Pont K.E., McCullagh M., Geiss B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip. Rev RNA. 2022; 13(2): e1688. https://doi.org/10.1002/wrna.1688
- Dubankova A., Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antiviral Res. 2019; 169: 104536. https://doi.org/10.1016/j.antiviral.2019.104536
- Duan Y., Zeng M., Jiang B., Zhang W., Wang M., Jia R., et al. Flavivirus RNA-dependent RNA polymerase interacts with genome UTRs and viral proteins to facilitate flavivirus RNA replication. Viruses. 2019; 11(10): 929. https://doi.org/10.3390/v11100929
- Lu G., Gong P. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Virus Res. 2017; 234: 34–43. https://doi.org/10.1016/j.virusres.2017.01.020
- Potapova U., Feranchuk S., Leonova G., Belikov S. The rearrangement of motif F in the flavivirus RNA-directed RNA polymerase. Int. J. Biol. Macromol. 2018; 108: 990–8. https://doi.org/10.1016/j.ijbiomac.2017.11.009
补充文件
