Patterns of the SARS-CoV-2 epidemic spread in a megacity
- Authors: Akimkin V.G.1, Kuzin S.N.1, Semenenko T.A.2, Shipulina O.Y.1, Yatsyshina S.B.1, Tivanova E.V.1, Kalenskaya A.V.1, Solovyova I.V.1, Vershinina M.A.1, Kvasova O.A.1, Ploskireva A.A.1, Mamoshina M.V.1, Elkina M.A.1, Klushkina V.V.1, Andreeva E.E.3, Ivanenko A.V.4
-
Affiliations:
- Central Research Institute for Epidemiology
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation
- Office of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being in Moscow
- Center for Hygiene and Epidemiology in the City of Moscow
- Issue: Vol 65, No 4 (2020)
- Pages: 203-211
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/118127
- DOI: https://doi.org/10.36233/0507-4088-2020-65-4-203-211
- ID: 118127
Cite item
Abstract
The purpose of the study is to analyze patterns demonstrated by the COVID-19 epidemic process in a megacity during the increase, stabilization and reduction in the incidence, and to evaluate the effectiveness of the epidemic prevention measures.
Materials and methods. The comprehensive study incorporating epidemiological, molecular genetic and statistical research methods was conducted to analyze the spread of SARS-CoV-2 in Moscow during the COVID- 19 pandemic.
Results and discussion. It was found that the exponential growth in COVID-19 cases was prevented due to the most stringent control and restrictive measures deployed in Moscow to break the chains of SARS-CoV-2 transmission and due to people who were very disciplined in complying with the self-isolation rules. The analysis of the dynamics in detection of new COVID-19 cases showed that in a megacity, the impact of social distancing and self-isolation would become apparent only after 3.5 incubation periods, where the maximum length of the period is 14 days. It was discovered that the detection frequency of SARS-CoV-2 RNA in relatively healthy population and its dynamics are important monitoring parameters, especially during the increase and stabilization in the COVID-19 incidence, and are instrumental in predicting the development of the epidemic situation within a range of 1–2 incubation periods (14–28 days). In Moscow, the case fatality rate was 1.73% over the observation period (6/3/2020–23/6/2020).
Conclusion. The epidemiological analysis of the COVID-19 situation in Moscow showed certain patterns of the SARS-CoV-2 spread and helped evaluate the effectiveness of the epidemic prevention measures aimed at breaking the routes of transmission of the pathogen.
Full Text
##article.viewOnOriginalSite##About the authors
V. G. Akimkin
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0003-4228-9044
Vasily G. Akimkin – D. Sci. (Med.), Full Member of the Russian Academy of Sciences, Director.
Moscow, 197101
Russian FederationS. N. Kuzin
Central Research Institute for Epidemiology
Author for correspondence.
Email: drkuzin@list.ru
ORCID iD: 0000-0002-0616-9777
Stanislav N. Kuzin – D. Sci. (Med.), prof., Head, Laboratory of viral hepatitis.
Moscow, 197101
Russian FederationT. A. Semenenko
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-6686-9011
Tatiana A. Semenenko – PhD, DSc (Med.), professor, Head of the epidemiology Department.
Moscow, 123098
Russian Federation
O. Yu. Shipulina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0003-4679-6772
Olga Yu. Shipulina – PhD (Med.), Head of subdivisions, of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.
Moscow, 197101 Russian FederationS. B. Yatsyshina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0003-4737-941X
Olga Yu. Shipulina – PhD (Med.), Head of subdivisions, of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationE. V. Tivanova
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0003-1286-2612
Elena V. Tivanova – Head, area of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationA. V. Kalenskaya
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-9126-1155
Anna V. Kalenskaya – Deputy head, area of laboratory medicine and laboratory services promotion for customer service, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationI. V. Solovyova
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-3136-9500
Irina V. Solovieva – Head, Quality assurance group, Clinical and diagnostic laboratory.
Moscow, 197101
Russian FederationM. A. Vershinina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0001-8582-5199
Marina A. Vershinina – leading consultant in laboratory medicine, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationO. A. Kvasova
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-4545-1804
Olga A. Kvasova – epidemiologist, Laboratory of Infections associated with the provision of medical assistance.
Moscow, 197101
Russian FederationA. A. Ploskireva
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-3612-1889
Antonina A. Ploskireva – D. Sci. (Med.), Deputy Director.
Moscow, 197101
Russian FederationM. V. Mamoshina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-1419-7807
Marina V. Mamoshina – junior researcher, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationM. A. Elkina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0003-4769-6781
Mariya A. Elkina – junior researcher, Department of molecular diagnostics and epidemiology.
Moscow, 197101
Russian FederationV. V. Klushkina
Central Research Institute for Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0001-8311-8204
Vitalina V. Klushkina – epidemiologist, Laboratory of viral hepatitis.
Moscow, 197101
Russian FederationE. E. Andreeva
Office of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being in Moscow
Email: fake@neicon.ru
ORCID iD: 0000-0001-6687-7276
Elena E. Andreeva – D. Sci. (Med.), prof., Head.
Moscow, 129626
Russian Federation
A. V. Ivanenko
Center for Hygiene and Epidemiology in the City of Moscow
Email: fake@neicon.ru
ORCID iD: 0000-0002-7122-017X
Alexandr V. Ivanenko – chief physician.
Moscow, 129626
Russian Federation
References
- Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. DOI: http://doi.org/10.1016/S0140-6736(20)30251-8
- Romagnani P., Gnone G., Guzzi F., Negrini S., Guastalla A., Annun-ziato F., et al. The COVID-19 infection: lessons from the Italian experience. J. Public Health Policy. 2020; 41(3): 238-44. DOI: http://doi.org/10.1057/s41271-020-00229-y
- Sebastiani G., Massa M., Riboli E. Covid-19 epidemic in Italy: evolution, projections and impact of government measures. Eur. J. Epidemiol. 2020; 35(4): 341-5. DOI: http://doi.org/10.1007/s10654-020-00631-6
- Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., at al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 2020; 382(10): 970-1. DOI: http://doi.org/10.1056/NEJMc200146
- Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020; 382(10): 929-36. DOI: http://doi.org/10.1056/NEJMoa2001191
- WHO. Coronavirus disease 2019 (COVID-19) Situation Report - 51. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf
- Беляков В.Д., Дегтярев А.А., Иванников Ю.Г. Качество и эффективность противоэпидемических мероприятий. Л.: Медицина; 1981.
- Акимкин В.Г., Кузин С.Н., Шипулина О.Ю., Яцышина С.Б., Ти-ванова Е.В., Каленская А.В. и др. Эпидемиологическое значение определения РНК SARS-CoV-2 среди различных групп населения Москвы и Московской области в период эпидемии COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(3): 197-201. DOI: http://doi.org/10.36233/0372-9311-2020-97-3-197-201
- Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., et al. The incubation period of coronavirus disease 2019 (Covid-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020; 172(9): 577-82. DOI: http://doi.org/10.7326/ M20-0504
- Backer J.A., Klinkenberg D., Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travelers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020; 25(5) : 2000062. DOI: http://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
- Liu T., Hu J., Kang M., Lin L., Zhong H., Xiao J., et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). J. Med. Virol. 2020; 92(5): 501-11. DOI: http://doi.org/10.1101/2020.01.25.919787
- Read J.M., Bridgen J.R.E., Cummings D.A.T., Ho A., Jewell C.P. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. 2020. DOI: http://doi.org/10.1101/2020.01.23.20018549
- Riou J., Althaus C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020; 25(4): 2000058. DOI: http://doi.org/10.2807/1560-7917.ES.2020.25A2000058.
- Shen M., Peng Z., Xiao Y., Zhang L. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. bioRxiv. 2020. DOI: http://doi.org/10.1101/2020.01.23.916726
- Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020; 395(10225): 689-97. DOI: http://doi.org/10.1016/S0140-6736(20)30260-9
- Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19. Immunity. 2020; 52(5): 737-41. DOI: http://doi.org/10.1016/j.immuni.2020.04.012
- Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N., et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020; 20(6): 669-77. DOI: http://doi.org/10.1016/S1473
- Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., de Salazar P.M., et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020; 26(4): 506-10. DOI: http://doi.org/10.1038/s41591-020-0822-7-3099(20)30243-7
- Puca E., Civljak R., Arapovic J., Popescu C., Christova I., Raka L., et al. Short epidemiological overview of the current situation on Covid-19 pandemic in Southeast European (SEE) countries. J. Infect. Dev. Ctries. 2020; 14(5): 433-7. DOI: http://doi.org/10.3855/jidc.12814
- Abdollahi E., Champredon D., Langley J.M., Galvani A.P., Moghadas S.M. Temporal estimates of case-fatality rate for COVID-19 outbreaks in Canada and the United States. CMAJ. 2020; 192(25): E666-70. DOI: http://doi.org/10.1503/cmaj.200711
- Xu S., Li Y. Beware of the second wave of COVID-19. Lancet. 2020; 395(10233): 1321-2. DOI: http://doi.org/10.1016/S0140-6736(20)30845-X
- de Brouwer R., van Veldhuisen D.J., de Boer R.A. Surviving the first COVID-19 wave and learning lessons for the second. Eur. J. Heart Fail. 2020; 22(6): 975-7. DOI: http://doi.org/10.1002/ejhf.1938
- Vogel L. Is Canada ready for the second wave of COVID-19? CMAJ. 2020; 192(24): E664-5. DOI: http://doi.org/10.1503/cmaj.1095875
- Ceylan Z. Estimation of COVID-19 Prevalence in Italy, Spain, and France. Sci. Total Environ. 2020; 729: 138817. DOI: http://doi.org/10.1016/j.scitotenv.2020.138817
- Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199-207. DOI: http://doi.org/10.1056/NEJMoa2001316
- Chatterjee A., Gerdes M.W., Martinez S.G. Statistical Explorations and Univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors (Basel). 2020; 20(11): 3089. DOI: http://doi.org/10.3390/s20113089
- Abdollahi E., Champredon D., Langley J.M., Galvani A.P., Moghadas S.M. Temporal estimates of case-fatality rate for COVID-19 outbreaks in Canada and the United States. CMAJ. 2020; 192(25): E666-70. DOI: http://doi.org/10.1503/cmaj.200711
- Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERS-CoV (подрод Merbecovirus). Вопросы вирусологии. 2020; 65(2): 62-70. DOI: http://doi.org/10.36233/0507-4088-2020-65-2-62-70
Supplementary files
