Patterns of the SARS-CoV-2 epidemic spread in a megacity

Cover Image

Cite item

Abstract

The purpose of the study is to analyze patterns demonstrated by the COVID-19 epidemic process in a megacity during the increase, stabilization and reduction in the incidence, and to evaluate the effectiveness of the epidemic prevention measures.

Materials and methods. The comprehensive study incorporating epidemiological, molecular genetic and  statistical research methods was conducted to analyze the spread of SARS-CoV-2 in Moscow during the COVID- 19 pandemic.

Results and discussion. It was found that the exponential growth in COVID-19 cases was prevented due to the most stringent control and restrictive measures deployed in Moscow to break the chains of SARS-CoV-2 transmission and due to people who were very disciplined in complying with the self-isolation rules. The  analysis of the dynamics in detection of new COVID-19 cases showed that in a megacity, the impact of social distancing and self-isolation would become apparent only after 3.5 incubation periods, where the maximum length of the period is 14 days. It was discovered that the detection frequency of SARS-CoV-2 RNA in relatively healthy population and its dynamics are important monitoring parameters, especially during the increase and stabilization in the COVID-19 incidence, and are instrumental in predicting the development of the epidemic situation within a range of 1–2 incubation periods (14–28 days). In Moscow, the case fatality rate was 1.73% over the observation period (6/3/2020–23/6/2020).

Conclusion. The epidemiological analysis of the COVID-19 situation in Moscow showed certain patterns of the SARS-CoV-2 spread and helped evaluate the effectiveness of the epidemic prevention measures aimed at  breaking the routes of transmission of the pathogen.  

About the authors

V. G. Akimkin

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-4228-9044

Vasily G. Akimkin – D. Sci. (Med.), Full Member of the Russian Academy of Sciences, Director.

Moscow, 197101

Russian Federation

S. N. Kuzin

Central Research Institute for Epidemiology

Author for correspondence.
Email: drkuzin@list.ru
ORCID iD: 0000-0002-0616-9777

Stanislav N. Kuzin – D. Sci. (Med.), prof., Head, Laboratory of viral hepatitis.

Moscow, 197101

Russian Federation

T. A. Semenenko

National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation

Email: fake@neicon.ru
ORCID iD: 0000-0002-6686-9011

Tatiana A. Semenenko – PhD, DSc (Med.), professor, Head of the epidemiology Department.

Moscow, 123098



Russian Federation

O. Yu. Shipulina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-4679-6772

Olga Yu. Shipulina – PhD (Med.), Head of subdivisions, of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.

Moscow, 197101 Russian Federation

S. B. Yatsyshina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-4737-941X

Olga Yu. Shipulina – PhD (Med.), Head of subdivisions, of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

E. V. Tivanova

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-1286-2612

Elena V. Tivanova – Head, area of laboratory medicine and laboratory services promotion, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

A. V. Kalenskaya

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-9126-1155

Anna V. Kalenskaya – Deputy head, area of laboratory medicine and laboratory services promotion for customer service, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

I. V. Solovyova

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-3136-9500

Irina V. Solovieva – Head, Quality assurance group, Clinical and diagnostic laboratory.

Moscow, 197101

Russian Federation

M. A. Vershinina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0001-8582-5199

Marina A. Vershinina – leading consultant in laboratory medicine, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

O. A. Kvasova

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-4545-1804

Olga A. Kvasova – epidemiologist, Laboratory of Infections associated with the provision of medical assistance.

Moscow, 197101

Russian Federation

A. A. Ploskireva

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-3612-1889

Antonina A. Ploskireva – D. Sci. (Med.), Deputy Director.

Moscow, 197101

Russian Federation

M. V. Mamoshina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0002-1419-7807

Marina V. Mamoshina – junior researcher, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

M. A. Elkina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-4769-6781

Mariya A. Elkina – junior researcher, Department of molecular diagnostics and epidemiology.

Moscow, 197101

Russian Federation

V. V. Klushkina

Central Research Institute for Epidemiology

Email: fake@neicon.ru
ORCID iD: 0000-0001-8311-8204

Vitalina V. Klushkina – epidemiologist, Laboratory of viral hepatitis.

Moscow, 197101

Russian Federation

E. E. Andreeva

Office of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being in Moscow

Email: fake@neicon.ru
ORCID iD: 0000-0001-6687-7276

Elena E. Andreeva – D. Sci. (Med.), prof., Head.

Moscow, 129626



Russian Federation

A. V. Ivanenko

Center for Hygiene and Epidemiology in the City of Moscow

Email: fake@neicon.ru
ORCID iD: 0000-0002-7122-017X

Alexandr V. Ivanenko – chief physician.

Moscow, 129626



Russian Federation

References

  1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. DOI: http://doi.org/10.1016/S0140-6736(20)30251-8
  2. Romagnani P., Gnone G., Guzzi F., Negrini S., Guastalla A., Annun-ziato F., et al. The COVID-19 infection: lessons from the Italian experience. J. Public Health Policy. 2020; 41(3): 238-44. DOI: http://doi.org/10.1057/s41271-020-00229-y
  3. Sebastiani G., Massa M., Riboli E. Covid-19 epidemic in Italy: evolution, projections and impact of government measures. Eur. J. Epidemiol. 2020; 35(4): 341-5. DOI: http://doi.org/10.1007/s10654-020-00631-6
  4. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., at al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 2020; 382(10): 970-1. DOI: http://doi.org/10.1056/NEJMc200146
  5. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020; 382(10): 929-36. DOI: http://doi.org/10.1056/NEJMoa2001191
  6. WHO. Coronavirus disease 2019 (COVID-19) Situation Report - 51. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf
  7. Беляков В.Д., Дегтярев А.А., Иванников Ю.Г. Качество и эффективность противоэпидемических мероприятий. Л.: Медицина; 1981.
  8. Акимкин В.Г., Кузин С.Н., Шипулина О.Ю., Яцышина С.Б., Ти-ванова Е.В., Каленская А.В. и др. Эпидемиологическое значение определения РНК SARS-CoV-2 среди различных групп населения Москвы и Московской области в период эпидемии COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(3): 197-201. DOI: http://doi.org/10.36233/0372-9311-2020-97-3-197-201
  9. Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., et al. The incubation period of coronavirus disease 2019 (Covid-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020; 172(9): 577-82. DOI: http://doi.org/10.7326/ M20-0504
  10. Backer J.A., Klinkenberg D., Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travelers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020; 25(5) : 2000062. DOI: http://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
  11. Liu T., Hu J., Kang M., Lin L., Zhong H., Xiao J., et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). J. Med. Virol. 2020; 92(5): 501-11. DOI: http://doi.org/10.1101/2020.01.25.919787
  12. Read J.M., Bridgen J.R.E., Cummings D.A.T., Ho A., Jewell C.P. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. 2020. DOI: http://doi.org/10.1101/2020.01.23.20018549
  13. Riou J., Althaus C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020; 25(4): 2000058. DOI: http://doi.org/10.2807/1560-7917.ES.2020.25A2000058.
  14. Shen M., Peng Z., Xiao Y., Zhang L. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. bioRxiv. 2020. DOI: http://doi.org/10.1101/2020.01.23.916726
  15. Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020; 395(10225): 689-97. DOI: http://doi.org/10.1016/S0140-6736(20)30260-9
  16. Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19. Immunity. 2020; 52(5): 737-41. DOI: http://doi.org/10.1016/j.immuni.2020.04.012
  17. Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N., et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020; 20(6): 669-77. DOI: http://doi.org/10.1016/S1473
  18. Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., de Salazar P.M., et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020; 26(4): 506-10. DOI: http://doi.org/10.1038/s41591-020-0822-7-3099(20)30243-7
  19. Puca E., Civljak R., Arapovic J., Popescu C., Christova I., Raka L., et al. Short epidemiological overview of the current situation on Covid-19 pandemic in Southeast European (SEE) countries. J. Infect. Dev. Ctries. 2020; 14(5): 433-7. DOI: http://doi.org/10.3855/jidc.12814
  20. Abdollahi E., Champredon D., Langley J.M., Galvani A.P., Moghadas S.M. Temporal estimates of case-fatality rate for COVID-19 outbreaks in Canada and the United States. CMAJ. 2020; 192(25): E666-70. DOI: http://doi.org/10.1503/cmaj.200711
  21. Xu S., Li Y. Beware of the second wave of COVID-19. Lancet. 2020; 395(10233): 1321-2. DOI: http://doi.org/10.1016/S0140-6736(20)30845-X
  22. de Brouwer R., van Veldhuisen D.J., de Boer R.A. Surviving the first COVID-19 wave and learning lessons for the second. Eur. J. Heart Fail. 2020; 22(6): 975-7. DOI: http://doi.org/10.1002/ejhf.1938
  23. Vogel L. Is Canada ready for the second wave of COVID-19? CMAJ. 2020; 192(24): E664-5. DOI: http://doi.org/10.1503/cmaj.1095875
  24. Ceylan Z. Estimation of COVID-19 Prevalence in Italy, Spain, and France. Sci. Total Environ. 2020; 729: 138817. DOI: http://doi.org/10.1016/j.scitotenv.2020.138817
  25. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199-207. DOI: http://doi.org/10.1056/NEJMoa2001316
  26. Chatterjee A., Gerdes M.W., Martinez S.G. Statistical Explorations and Univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors (Basel). 2020; 20(11): 3089. DOI: http://doi.org/10.3390/s20113089
  27. Abdollahi E., Champredon D., Langley J.M., Galvani A.P., Moghadas S.M. Temporal estimates of case-fatality rate for COVID-19 outbreaks in Canada and the United States. CMAJ. 2020; 192(25): E666-70. DOI: http://doi.org/10.1503/cmaj.200711
  28. Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERS-CoV (подрод Merbecovirus). Вопросы вирусологии. 2020; 65(2): 62-70. DOI: http://doi.org/10.36233/0507-4088-2020-65-2-62-70

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Akimkin V.G., Kuzin S.N., Semenenko T.A., Shipulina O.Y., Yatsyshina S.B., Tivanova E.V., Kalenskaya A.V., Solovyova I.V., Vershinina M.A., Kvasova O.A., Ploskireva A.A., Mamoshina M.V., Elkina M.A., Klushkina V.V., Andreeva E.E., Ivanenko A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».