Antimicrobial Potential Micromycete Emericellopsis sp. E102 and the Influence of Cultivation Conditions on the Biosynthesis of Antibiotics
- 作者: Sokolov V.V.1, Mironov I.V.1, Simonov A.Y.1, Levshin I.B.1, Georgieva M.L.1,2, Sadykova V.S.1
-
隶属关系:
- Gause Institute of New Antibiotics
- Moscow State University
- 期: 卷 61, 编号 5 (2025)
- 页面: 494-503
- 栏目: Articles
- URL: https://journal-vniispk.ru/0555-1099/article/view/353896
- DOI: https://doi.org/10.7868/S3034574Х25050063
- ID: 353896
如何引用文章
详细
作者简介
V. Sokolov
Gause Institute of New AntibioticsMoscow, 119021 Russia
I. Mironov
Gause Institute of New AntibioticsMoscow, 119021 Russia
A. Simonov
Gause Institute of New AntibioticsMoscow, 119021 Russia
I. Levshin
Gause Institute of New AntibioticsMoscow, 119021 Russia
M. Georgieva
Gause Institute of New Antibiotics; Moscow State UniversityMoscow, 119021 Russia; Moscow, 119234 Russia
V. Sadykova
Gause Institute of New Antibiotics
Email: sadykova_09@mail.ru
Moscow, 119021 Russia
参考
- Van Beyma Thoe Kingma F.H. // Antonie van Leeuwenhoek. 1939. V. 6. P. 263–290. https://doi.org/10.1007/BF02146191
- Hou L.W., Giraldo A., Groenewald J.Z., Rämä T., Summerbell R.C., Huang G.Z. et al. // Stud. Mycol. 2023. V. 105. P. 23–203. https://doi.org/10.3114/sim.2023.105.02
- Phurbu D., Huang J.-E., Song S., Ni Z., Zhou X., Li S. et al. // Mycology. 2024. p. 1–20. https://doi.org/10.1080/21501203.2024.2333300
- Zuccaro A., Summerbell R.C., Gams W., Schroers H.-J., Mitchell J.I. // Stud. Mycol. 2004. V. 50. P. 283–297.
- Grum-Grzhimaylo A.A., Georgieva M.L., Debets A.J.M., Bilanenko E.N. // IMA Fungus. 2013. V. 4 P. 213–228. https://doi.org/10.5598/imafungus.2013.04.02.07
- Grosklags J.H., Swift M.E. // Mycologia. 1957. V. 49. P. 305 –317. https://doi.org/10.1080/00275514.1957.12024646
- Bode H.B., Bethe B., Höfs R., Zeeck A . // ChemBioChem. 2002. V. 3. P. 619–627. https :// doi . org /10.1002/1439-7633(20020703)3:7<619:: AID - CBIC 619>3.0. CO ;2-9
- Katoh K., Standley D.M. // Mol. Biol. Evol. 2013. V. 30. P. 772–780. https://doi.org /10.1093/molbev/mst010
- Tamura K., Stecher G., Kumar S. // Mol. Biol. Evol. 2021. V. 38. P. 3022– 3027. https://doi.org/10.1093/molbev/msab120
- Minh B.Q., Schmidt H.A., Chernomor O. , Schrempf D., Woodhams M.D., Von Haeseler A. et al. // Mol. Biol. Evol. 2020. V. 37. P. 1530–1534. https://doi. org/10.1093/molbev/msaa015
- Simmons M.P., Ochoterena H. // Syst. Biol. 2000. V. 49. P. 369–381. https://doi.org/10.1093/sysbio/49.2.369
- Müller К . // Appl. Bioinformatics. 2005. V. 4. P. 65–69. https://doi.org/10.2165/00822942-200504010-00008
- Altekar G. , Dwarkadas S., Huelsenbeck J.P., Ronqu- ist F. // Bioinformatics. 2004. V. 20. P. 407–415. https://doi.org/ 10.1093/bioinformatics/btg427
- Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A. , Höhna S. et al. // Syst. Biol. 2012. V. 61. P. 539–542. https://doi.org/10.1093/ sysbio/sys029
- Ayres D.L., Darling A., Zwickl D.J., Beerli P., Hol- der M.T., Lewis P.O. et al. // Syst. Biol. 2012. V. 61. P. 170–173. https://doi.org/10.1093/sysbio/syr100
- Paradis E., Schliep K. // Bioinformatics. 2019. V. 35. P. 526–528. https://doi.org/10.1093/bioinformatics/bty 633
- Wang L.-G., Lam T.T.-Y., Xu S., Dai Z., Zhou L., Feng T. et al. // Mol. Biol. Evol. 2020. V. 37. P. 599 –603. https://doi.org/10.1093/molbev/msz240
- Yu G. Data Integration, Manipulation and Visualization of Phylogenetic Trees. N.Y.: Chapman and Hall CRC, 2022. 276 p. https://doi.org/ 10.1201/9781003279242
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rogozhin E., Sadykova V., Baranova A., Vasilchenko A., Lushpa V., Mineev K. et al // Molecules. 2018. V. 23. № 11. P. 2785–2797. https://doi.org/10.3390/molecules23112785
- Kuvarina A.E., Gavryushina I.A., Kulko A.B., Iva- nov I.A., Rogozhin E.A., Georgieva M.L. et al. // J. Fungi. 2021. V. 7. № 2. P. 153–170. https://doi.org/10.3390/jof7020153
- Kuvarina A.E., Gavryushina I.A., Sykonnikov M.A., Efimenko T.A., Markelova N.N., Bilanenko E.N. et al // Molecules. 2022. V. 27. № 5. P. 1736–1752. https://doi.org/10.3390/molecules27051736
- 23 . Blunt J.W., Carroll A.R., Copp B.R., Davis R.A., Key-zers R.A., Prinsep M.R. // Nat. Prod. Rep. 2018. V. 35. P. 8 –53. https://doi.org/10.1039/C7NP00052A
- Hagestad O.C., Hou L., Andersen J.H., Hansen E.H., Altermark B., Li C. et al. // IMA Fungus. 2021. V. 12 № 21. P. 1–23. https://doi.org/10.1186/s43008-021-00072-0
- Gonçalves M.F.M., Hilá rio S., Van De Peer Y., Este- ves A.C., Alves A. // J. Fungi. 2021. V. 8. № 31. P. 1–20. https://doi.org/10.3390/jof8010031
- Inostroza A., Lara L., Paz C., Perez A., Galleguil- los F., Hernandez V. et al. // Nat. Prod. Res. 2018. V. 32. P. 1361–1364. https://doi.org/10.1080/14786419.2017.1344655
- Cole M., Rolinson G.N. // Proc. R. Soc. Lond. B Biol. Sci. 1961. V. 154. P. 490–497. https://doi.org/10.1098/rspb.1961.0046
- Perazzoli G., De Los Reyes C., Pinedo-Rivilla C., Durán-Patr ón R., Aleu J., Cabeza L. et al. // J. Mar. Sci. Eng. 2023. V. 11. № 10 P. 2–12. https://doi.org/10.3390/jmse11102024
- 2 9. Magot F., Van Soen G., Buedenbender L., Li F., Soltwe- del T., Grauso L. et al. // Mar. Drugs. 2023. V. 21. № 95. P. 2–23. https://doi.org/10.3390/md21020095
- Utermann C., Echelmeyer V.A., Blümel M., Tasde- mir D. // Microorganisms. 2020. V. 8 № 11. P. 1732–1755. https://doi.org/10.3390/microorganisms8111732
- Georgieva M.L., Bilanenko E.N. , Ponizovskaya V.B., Ko kaeva L.Y., Georgiev A.A., Efimenko T.A. et al. // Microorganisms. 2023. V. 11. № 10. P. 2587–2618. https://doi.org/10.3390/microorganisms11102587
- Virués-Segovia J.R., Millán C., Pinedo C., González-Rodríguez V.E., Papaspyrou S., Zorrilla D. et al. // Mar. Drugs. 2023. V. 21. № 12. P. 634–649. https://doi.org/10.3390/md21120634
- Virués-Segovia J.R., Pinedo C., Zorrilla D., Sánchez-Márquez J., Sánchez P., Ramos M.C. et al. // Front. Mar. Sci. 2024. V. 11. P . 1–13. https://doi.org/10.3389/fmars.2024.1386175
补充文件

