Antimicrobial Potential Micromycete Emericellopsis sp. E102 and the Influence of Cultivation Conditions on the Biosynthesis of Antibiotics
- Autores: Sokolov V.V.1, Mironov I.V.1, Simonov A.Y.1, Levshin I.B.1, Georgieva M.L.1,2, Sadykova V.S.1
-
Afiliações:
- Gause Institute of New Antibiotics
- Moscow State University
- Edição: Volume 61, Nº 5 (2025)
- Páginas: 494-503
- Seção: Articles
- URL: https://journal-vniispk.ru/0555-1099/article/view/353896
- DOI: https://doi.org/10.7868/S3034574Х25050063
- ID: 353896
Citar
Resumo
Palavras-chave
Sobre autores
V. Sokolov
Gause Institute of New AntibioticsMoscow, 119021 Russia
I. Mironov
Gause Institute of New AntibioticsMoscow, 119021 Russia
A. Simonov
Gause Institute of New AntibioticsMoscow, 119021 Russia
I. Levshin
Gause Institute of New AntibioticsMoscow, 119021 Russia
M. Georgieva
Gause Institute of New Antibiotics; Moscow State UniversityMoscow, 119021 Russia; Moscow, 119234 Russia
V. Sadykova
Gause Institute of New Antibiotics
Email: sadykova_09@mail.ru
Moscow, 119021 Russia
Bibliografia
- Van Beyma Thoe Kingma F.H. // Antonie van Leeuwenhoek. 1939. V. 6. P. 263–290. https://doi.org/10.1007/BF02146191
- Hou L.W., Giraldo A., Groenewald J.Z., Rämä T., Summerbell R.C., Huang G.Z. et al. // Stud. Mycol. 2023. V. 105. P. 23–203. https://doi.org/10.3114/sim.2023.105.02
- Phurbu D., Huang J.-E., Song S., Ni Z., Zhou X., Li S. et al. // Mycology. 2024. p. 1–20. https://doi.org/10.1080/21501203.2024.2333300
- Zuccaro A., Summerbell R.C., Gams W., Schroers H.-J., Mitchell J.I. // Stud. Mycol. 2004. V. 50. P. 283–297.
- Grum-Grzhimaylo A.A., Georgieva M.L., Debets A.J.M., Bilanenko E.N. // IMA Fungus. 2013. V. 4 P. 213–228. https://doi.org/10.5598/imafungus.2013.04.02.07
- Grosklags J.H., Swift M.E. // Mycologia. 1957. V. 49. P. 305 –317. https://doi.org/10.1080/00275514.1957.12024646
- Bode H.B., Bethe B., Höfs R., Zeeck A . // ChemBioChem. 2002. V. 3. P. 619–627. https :// doi . org /10.1002/1439-7633(20020703)3:7<619:: AID - CBIC 619>3.0. CO ;2-9
- Katoh K., Standley D.M. // Mol. Biol. Evol. 2013. V. 30. P. 772–780. https://doi.org /10.1093/molbev/mst010
- Tamura K., Stecher G., Kumar S. // Mol. Biol. Evol. 2021. V. 38. P. 3022– 3027. https://doi.org/10.1093/molbev/msab120
- Minh B.Q., Schmidt H.A., Chernomor O. , Schrempf D., Woodhams M.D., Von Haeseler A. et al. // Mol. Biol. Evol. 2020. V. 37. P. 1530–1534. https://doi. org/10.1093/molbev/msaa015
- Simmons M.P., Ochoterena H. // Syst. Biol. 2000. V. 49. P. 369–381. https://doi.org/10.1093/sysbio/49.2.369
- Müller К . // Appl. Bioinformatics. 2005. V. 4. P. 65–69. https://doi.org/10.2165/00822942-200504010-00008
- Altekar G. , Dwarkadas S., Huelsenbeck J.P., Ronqu- ist F. // Bioinformatics. 2004. V. 20. P. 407–415. https://doi.org/ 10.1093/bioinformatics/btg427
- Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A. , Höhna S. et al. // Syst. Biol. 2012. V. 61. P. 539–542. https://doi.org/10.1093/ sysbio/sys029
- Ayres D.L., Darling A., Zwickl D.J., Beerli P., Hol- der M.T., Lewis P.O. et al. // Syst. Biol. 2012. V. 61. P. 170–173. https://doi.org/10.1093/sysbio/syr100
- Paradis E., Schliep K. // Bioinformatics. 2019. V. 35. P. 526–528. https://doi.org/10.1093/bioinformatics/bty 633
- Wang L.-G., Lam T.T.-Y., Xu S., Dai Z., Zhou L., Feng T. et al. // Mol. Biol. Evol. 2020. V. 37. P. 599 –603. https://doi.org/10.1093/molbev/msz240
- Yu G. Data Integration, Manipulation and Visualization of Phylogenetic Trees. N.Y.: Chapman and Hall CRC, 2022. 276 p. https://doi.org/ 10.1201/9781003279242
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rogozhin E., Sadykova V., Baranova A., Vasilchenko A., Lushpa V., Mineev K. et al // Molecules. 2018. V. 23. № 11. P. 2785–2797. https://doi.org/10.3390/molecules23112785
- Kuvarina A.E., Gavryushina I.A., Kulko A.B., Iva- nov I.A., Rogozhin E.A., Georgieva M.L. et al. // J. Fungi. 2021. V. 7. № 2. P. 153–170. https://doi.org/10.3390/jof7020153
- Kuvarina A.E., Gavryushina I.A., Sykonnikov M.A., Efimenko T.A., Markelova N.N., Bilanenko E.N. et al // Molecules. 2022. V. 27. № 5. P. 1736–1752. https://doi.org/10.3390/molecules27051736
- 23 . Blunt J.W., Carroll A.R., Copp B.R., Davis R.A., Key-zers R.A., Prinsep M.R. // Nat. Prod. Rep. 2018. V. 35. P. 8 –53. https://doi.org/10.1039/C7NP00052A
- Hagestad O.C., Hou L., Andersen J.H., Hansen E.H., Altermark B., Li C. et al. // IMA Fungus. 2021. V. 12 № 21. P. 1–23. https://doi.org/10.1186/s43008-021-00072-0
- Gonçalves M.F.M., Hilá rio S., Van De Peer Y., Este- ves A.C., Alves A. // J. Fungi. 2021. V. 8. № 31. P. 1–20. https://doi.org/10.3390/jof8010031
- Inostroza A., Lara L., Paz C., Perez A., Galleguil- los F., Hernandez V. et al. // Nat. Prod. Res. 2018. V. 32. P. 1361–1364. https://doi.org/10.1080/14786419.2017.1344655
- Cole M., Rolinson G.N. // Proc. R. Soc. Lond. B Biol. Sci. 1961. V. 154. P. 490–497. https://doi.org/10.1098/rspb.1961.0046
- Perazzoli G., De Los Reyes C., Pinedo-Rivilla C., Durán-Patr ón R., Aleu J., Cabeza L. et al. // J. Mar. Sci. Eng. 2023. V. 11. № 10 P. 2–12. https://doi.org/10.3390/jmse11102024
- 2 9. Magot F., Van Soen G., Buedenbender L., Li F., Soltwe- del T., Grauso L. et al. // Mar. Drugs. 2023. V. 21. № 95. P. 2–23. https://doi.org/10.3390/md21020095
- Utermann C., Echelmeyer V.A., Blümel M., Tasde- mir D. // Microorganisms. 2020. V. 8 № 11. P. 1732–1755. https://doi.org/10.3390/microorganisms8111732
- Georgieva M.L., Bilanenko E.N. , Ponizovskaya V.B., Ko kaeva L.Y., Georgiev A.A., Efimenko T.A. et al. // Microorganisms. 2023. V. 11. № 10. P. 2587–2618. https://doi.org/10.3390/microorganisms11102587
- Virués-Segovia J.R., Millán C., Pinedo C., González-Rodríguez V.E., Papaspyrou S., Zorrilla D. et al. // Mar. Drugs. 2023. V. 21. № 12. P. 634–649. https://doi.org/10.3390/md21120634
- Virués-Segovia J.R., Pinedo C., Zorrilla D., Sánchez-Márquez J., Sánchez P., Ramos M.C. et al. // Front. Mar. Sci. 2024. V. 11. P . 1–13. https://doi.org/10.3389/fmars.2024.1386175
Arquivos suplementares

