Mineral composition and parameters of metamorphism of granulite in the Khapchan orogenic belt (Anabar shield)
- Authors: Yurchenko A.V.1, Skublov S.G.1,2, Gusev N.I.3, Romanova L.Y.3
-
Affiliations:
- Institute of Precambrian Geology and Geochronology RAS
- Saint Petersburg Mining University
- Karpinsky Russian Geological Research Institute
- Issue: Vol CLIII, No 5 (2024)
- Pages: 13-37
- Section: Articles
- URL: https://journal-vniispk.ru/0869-6055/article/view/281286
- DOI: https://doi.org/10.31857/S0869605524050021
- EDN: https://elibrary.ru/PCPXAM
- ID: 281286
Cite item
Abstract
The calculation of temperature and pressure of metamorphic mineral formation was carried out by methods of mineral thermobarometry for granulites of the Khapchan Group. Peak metamorphism conditions were hidden by a post-culmination partitioning of Fe and Mg between minerals at the retrograde stage of metamorphism. The maximum temperature and pressure obtained with the winTWQ are 820—855 °C and 6.6—7.0 kbar. The retrograde stage of metamorphism was characterized by a synchronous decrease in temperature and pressure down to 560 °C and 3 kbar. It is embodied in a composition of biotite: Ti, Sr, and REE contents in this mineral are lowered when temperature is decreased. The rare-element composition of garnets with a well-defined negative Eu anomaly and high value of SmN/GdN ratio is typical for low-calcium garnets of granulite facies.
Full Text

About the authors
A. V. Yurchenko
Institute of Precambrian Geology and Geochronology RAS
Author for correspondence.
Email: yurchenko-nastya@yandex.ru
Д. чл.
Russian Federation, Saint PetersburgS. G. Skublov
Institute of Precambrian Geology and Geochronology RAS; Saint Petersburg Mining University
Email: skublov@yandex.ru
д. чл.
Russian Federation, Saint Petersburg; Saint PetersburgN. I. Gusev
Karpinsky Russian Geological Research Institute
Email: nikolay_gusev@karpinskyinstitute.ru
Russian Federation, Saint Petersburg
L. Yu. Romanova
Karpinsky Russian Geological Research Institute
Email: yurchenko-nastya@yandex.ru
Russian Federation, Saint Petersburg
References
- Abdrakhmanov I. A., Gulbin Yu. L., Gembitskaya I. M. Fe–Mg–Al–Ti–Zn oxide assemblage in granulites of the Bunger Hills, East Antarctica: evidence of ultrahigh-temperature metamorphism. Zapiski RMO (Proc. Russian Miner. Soc.). 2021. Vol. 150. N4. P. 38—76 (in Russian, English translation: Geol. Ore Deposits. 2022. Vol. 64. N 8. P. 519—549).
- Abdrakhmanov I. A., Gulbin Yu. L., Skublov S. G., Galankina O. L. Mineralogical constraints on the pressure–temperature evolution of granulites in the Bunger Hills, East Antarctica. Minerals. 2024. Vol. 14 (5). Paper 488. https://doi.org/10.3390/min14050488
- Aranovich L. Ya., Podlesskii K. K. Geothermobarometry of high-grade metapelites: simultaneously operating reactions. Geol. Soc. London. Spec. Publ. 1989. Vol. 43. P. 45—61.
- Archaea of the Anabar Shield and Problems of Earth Evolution. Moscow: Nauka, 1988. 253 р. (in Russian).
- Berman R. G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Canad. Miner. 1991. Vol. 32. P. 833—855.
- Berman R. G., Aranovich L. Y. Optimized standard state and solution properties of minerals: 1. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO––—. Contrib. Miner. Petrol. 1996. Vol. 126. P. 1—24.
- Berman R. G., Aranovich L. Ya., Rancourt D. G., Mercier D. G. Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite. Amer. Miner. 2007. Vol. 92. P. 139—150.
- Brady J. B., Cherniak D. J. Diffusion in minerals: an overview of published experimental diffusion data. Rev. Miner. Geochem. 2010. Vol. 72. P. 899—920.
- Cid J. P., Nardi L. V. S., Conceicao H., Bonin B. Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-mafic minerals. J. Asian Earth Sci. 2001. Vol. 19. P. 375—397.
- Clark C., Taylor R. J. M., Johnson T. E., Harley S. L., Fitzsimons I. C. W., Oliver L. Testing the fidelity of thermometers at ultrahigh temperatures. J. Metamorph. Geol. 2019. Vol. 37. P. 917—934.
- Condie K. C., Wilks M., Rosen D. M., Zlobin V. L. Geochemistry of metasediments from the Precambrian Hapschan Series, eastern Anabar Shield, Siberia. Precambrian Res. 1991. Vol. 50. P. 37—47.
- Donskaya T. V. Assembly of the Siberian craton: Constraints from Paleoproterozoic granitoids. Precambrian Res. 2020. Vol. 348. 105869.
- Eckert J. O. Jr., Newton R. C., Kleppa O. J. The ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. Amer. Miner. 1991. Vol. 76. P. 148—160.
- Ganguly J., Cheng W., Tirone M. Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib. Miner. Petrol. 1996. Vol. 126 (1—2). P. 137—151.
- Godet A., Raimondo T., Guilmette C. Atoll garnet: insights from LA-ICP-MS trace element mapping. Contrib. Mineral. Petrol. 2022. V. 177 (57). P. 1—15.
- Griffin W. L., Ryan C. G., Kaminsky F. V., O’Reilly S.Y., Natapov L. M., Win T. T., Kinny P. D., Ilupin I. P. The Siberian lithosphere traverse, mantle terranes and the assemble of the Siberian craton. Tectonophysics. 1999. Vol. 310. P. 1—35.
- Gulbin Yu. L., Abdrakhmanov I. A., Gembitskaya I. M., Vasiliev E. A. Oriented micro-inclusions of Al–Fe–Mg–Ti oxides in quartz from metapelitic granulites of the Bunger Hills, East Antarctica. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 4. P. 1—17 (in Russian, English translation: Geol. Ore Deposits. 2023. Vol. 65. N 7. P. 656—668).
- Gusev N. I. Anabar Shield of the Siberian Craton. Material composition, geochemistry, geochronology. Germany: LAP LAMBERT Academic Publishing, 2013. 181 р. (in Russian).
- Gusev N. I., Sergeeva L. Yu., Skublov S. G. Evidence of subduction of the Paleoproterozoic oceanic crust in the Khapchan belt of the Anabar Shield of the Siberian Craton. Petrology. 2021. Vol. 29. Р. 95—113.
- Harley S. L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Miner. Petrol. 1984a. Vol. 86. P. 359—373.
- Harley S. L. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO–– and CaO–FeO–MgO––. J. Petrol. 1984b. Vol. 25. P. 665—696.
- Harley S. L. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. Geol. Soc. London. Spec. Publ. 1998. Vol. 138. P. 81—107.
- Henry D. J., Guidotti C. V., Thomson J. A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Amer. Miner. 2005. Vol. 90. P. 316—328.
- Holdaway M. J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Amer. Miner. 2000. Vol. 85. P. 881—892.
- Holdaway M. J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Amer. Miner. 2001. Vol. 86. P. 1117—1129.
- Jung S., Hellebrand E. Trace element fractionation during high-grade metamorphism and crustal melting — constraints from ion microprobe data of metapelitic, migmatitic and igneous garnets and implications for Sm–Nd garnet chronology. Lithos. 2006. Vol. 87. P. 193—213.
- Kawasaki T., Motoyoshi Yo. Ti-in-garnet thermometer for ultrahigh-temperature granulites. J. Miner. Petrol. Sci. 2016. Vol. 111. P. 226—240.
- Lutz B. G., Kopaneva L. N. Pyrope-sapphirine rock of the Anabar Massif and conditions of its metamorphism. Doklady Acad. Sci. USSR. 1968. Vol. 179(5). Р. 1200—1202 (in Russian).
- McDonough W. F., Sun S.-S. The composition of the Earth. Chem. Geol. 1995. Vol. 120. P. 223—253.
- Nichols G. T., Berry R. F., Green D. H. Internally consistent gahnitic spinel-cordierite-garnet equilibira in the FMASHZn system: geothermobarometry and application. Contrib. Miner. Petrol. 1992. Vol. 111. P. 362—377.
- Nozhkin A. D., Likhanov I. I., Savko K. A., Krylov A. A., Serov P. A. Sapphirine-bearing granulites of the Anabar Shield. Geochem. Int. 2019. Vol. 57. Р. 524—539.
- Nozhkin A. D., Turkina O. M., Salnikova E. B., Likhanova I. I., Savko K. A. Charnokites of the central part of the Anabar Shield: distribution, petrochemical composition, age and formation conditions. Geochem. Int. 2022. Vol. 60. Р. 711—723.
- Pattison D. R. M, Chacko T., Farquhar J., McFarlane C. R. M. Temperatures of granulite facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J. Petrol. 2003. Vol. 44. P. 867—900.
- Perkins D. Thermometry and barometry of mafic granulites based on garnet-clinopyroxene-plagioclase-quartz assemblages. In: Granulites and Crustal Evolution. Kluwer Academic: Dordrecht, 1990. P. 435—450.
- Rosen O. M. Siberian craton: tectonic zoning stages of evolution. Geotectonics. 2003. Vol. 37 (3). Р. 157—192.
- Rosen O. M., Condie K. C., Natapov L. M., Nozhkin A. D. Archean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment. In: Archean Crustal Evolution. Amsterdam: Elsevier, 1994. P. 411—459.
- Rosen O. M., Turkina O. M. The oldest rock assemblages of the Siberian Craton. In: Precambrian ophiolites and related rocks. Development in Precambrian Geology. 2007. Vol. 15. P. 793—842.
- Rozen O. M., Manakov A. V., Zinchuk N. N. Siberian Craton: Formation and Diamond Content. Moscow: Nauchny Mir, 2006. 212 р. (in Russian).
- Samadi R., Torabi G., Kawabata H., Miller N. R. Biotite as a petrogenetic discriminator: chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran. Lithos. 2021. Vol. 386. 106016.
- Shulters J. C., Bohlen S. R. The stability of hercynite and hercynite-gahnite spinels in corundum- or quartz-bearing assemblages. J. Petrol. 1989. Vol. 30. P. 1017—1031.
- Skublov S. G. Geochemistry of rare earth elements in rock-forming metamorphic minerals. Saint Petersburg: Nauka, 147 р. (in Russian).
- Stativko V. S., Skublov S. G., Smolenskiy V. V., Kuznetsov A. B. Trace and rare-earth elements in garnets from silicate-carbonate formations of the Kusa-Kopan complex (Southern Urals). Lithosphere. 2023. Vol. 23(2). Р. 225—246 (in Russian).
- Tajcmanova L., Konopasek J., Košler J. Distribution of zinc and its role in the stabilization of spinel in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif). Eur. J. Miner. 2009. Vol. 21. P. 407—418.
- The structure of the Earth’s crust of the Anabar Shield. Ed. V. M. Moralev. Moscow: Nauka, 1986. 198 p. (in Russian).
- Vishnevskii A. N. Metamorphic complexes of the Anabar crystalline shield. Vol. 184. Leningrad: Nedra, 1978. 216 р. (in Russian).
- Wark D. A., Watson E. B. TitaniQ: a titanium-in-quartz geothermometer. Contrib. Miner. Petrol. 2006. Vol. 152. P. 743—754.
- Warr L. N. IMA–CNMNC approved mineral symbols. Miner. Mag. 2021. Vol. 85. P. 291—320.
- Wu C.-M., Chen H.-X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci. Bull. 2015. Vol. 60. P. 116—121.
- Wu C.-M., Zhang J., Ren L.-D. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J. Petrol. 2004. Vol. 45. P. 1907—1921.
- Zlobin V. L., Rosen O. M., Abbyasov A. A. Two metasedimentary basins of the Early Precambrian granulites of the Anabar Shield (Polar Siberia): normative mineral compositions calculated by the MINLITH program and basin facies interpretations. In: International Association of Sedimentologists Special Publication 33. Fluvial Sedimentology VII. 2002. Р. 275—291.
Supplementary files
