Platinum group minerals from chromite ores of the Rai-Iz ultramafic massif (Polar Ural): new data

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In chromite ores of Central and No. 214 deposits of the Rai-Iz ultramafic massif, which is part of the Khadatinsky ophiolite belt of the Polar Urals, along with previously known platinum group minerals (PGM), native ferrous ruthenium, native ruthenium nickel (iridium-ruthenium), native platinum, new unnamed intermetallic compound (Rh,Pt)3Zn (with Rh content of up to 88 wt %), As-rich disulfides of laurite–erlichmanite series (with As content of up to 4.2 wt %) and unnamed sulfoarsenide with stoichiometric formula (Ir,Os)(S,As) were discovered and characterized for the first time. Grains of native ruthenium with Ru content of up to 80.5 wt % were diagnosed for the first time, against the previously known Ru content of up to 36.8 wt %. The set of PGMs of massif has been expanded from 24 to 31 mineral varieties. It has been shown that diversity of PGMs depends on density of dissemination of chromite ores, degree of their cataclasis and metamorphic transformation. Solid (massive) and noticeably metamorphosed chromite ores exhibit widest and most diverse set of PGMs. The Rai-Iz massif has preserved platinum group complexes that reflect features of upper mantle deep mineral formation. Such early mantle-magmatic formations include native osmium, Ir-containing osmium, native iridium and sulfides (disulfides of the laurite-erlichmanite series, kashinite, and cuproiridsite). Formation of other specific native minerals and intermetallics of PGE, with participation of mobile metals (Ni, Cu, Zn, Mn, As) and removal of part of sulfide sulfur, is associated with cataclasis and metamorphic transformation of ore chrome spinels and primary PGM included in them. The identified secondary PGMs were formed mainly in regional-metamorphic (regressive) stage [native ruthenium, ruthenium nickel, unnamed MSS (Ru,Ni,Os,Fe), As-rich disulfides of the laurite-erlichmannite series and unnamed sulfoarsenide (Ir,Os)(S,As)] and, to lesser extent, in contact-metamorphic (progressive) stage (native ferrous ruthenium, native platinum and new intermetallic of rhodium (Rh,Pt)3Zn).

Texto integral

Acesso é fechado

Sobre autores

А. Yurichev

Tomsk State University

Autor responsável pela correspondência
Email: juratur@yandex.ru
Rússia, Tomsk

A. Chernyshov

Tomsk State University

Email: juratur@yandex.ru
Rússia, Tomsk

E. Korbovyak

Tomsk State University

Email: juratur@yandex.ru
Rússia, Tomsk

Bibliografia

  1. Anikina E.V., Moloshag V.P., Alimov V.Yu. Platinoid minerals in chromites of the Voykar-Syninsky and Rai-Iz massifs. Reports Acad. Sci. 1993. Vol. 330. N 5. P. 613–616 (in Russian).
  2. Anikina E.V. Platinoids in chromium ores of the Polar Urals. Syktyvkar: IG Komi Scientific Center Ural Branch RAS, 1995. 40 p. (in Russian).
  3. Bai W., Robinson P.T., Fang Q., Yang J., Yan B., Zhang Z., Xu-Feeng Hu, Zhou M.-F., Malpas J. The PGE and base metal alloys in the podiform chromitites of the Luobusa ophiolite, Southern Tibet. Canad. Miner. 2000. Vol. 38. N 3. P. 585–598.
  4. Bezmen N.I., Brugmann G.E., Naldrett A.J. Mechanism of concentration of platinum group elements: partitioning between silicate and sulfide melts. Int. Geol. Rev. 1991. Vol. 33. N 8. P. 784–792.
  5. Distler V.V., Kryachko V.V., Yudovskaya M.A. Formation conditions of platinum-group metals in chromite ores of the Kempirsai ore field. Geol. Ore Deposits. 2003. Vol. 45. N 1. P. 37–65 (in Russian).
  6. Garuti G., Zaccarini F. In situ alteration of platinum-group minerals at low temperature: evidence from serpentinized and weathered chromitites of the Vourinos Complex, Greece. Canad. Miner. 1997. Vol. 35. P. 611–626.
  7. Garuti G., Zaccarini F., Moloshag V., Alimov V. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Rai-Iz ultramafic complex, Polar Urals, Russia. Canad. Miner. 1999. Vol. 37. P. 1099–1115.
  8. Goncharenko A.I. Deformation and petrostructural evolution of alpine-type ultramafic rocks. Tomsk: Publishing House of Tomsk University, 1989. 404 p. (in Russian).
  9. Gurskaya L.I., Smelova L.V., Kolbantsev L.R., Lyakhnitskaya V.D., Lyakhnitsky Yu.S., Shakhova S.N. Platinoids of chromite-bearing massifs of the Polar Urals. Saint Petersburg: VSEGEI, 2004. 306 p. (in Russian).
  10. Harris D.C., Cabri L.J., Nomenclature of platinum-group-element alloys: review and revision. Canad. Mineral. 1991. Vol. 29. P. 231–237.
  11. Kucherina P.M., Popov I.I., Pryamonosov A.P., Krasheninnikov A.L., Krasheninnikova L.I., Perminov I.G., Tsvigun L.N., Gaptulkadyrov M.M., Mustakimova E.A. Geological Structure and Mineral Resources of the Northwestern Voikar Synclinorium and the Rai-Iz Massif Area and Borders. 1:50000. Information Report. Vol. 1. Polar Ural Geological Exploration Expedition, 1991. 431 p. (in Russian).
  12. Lesnov F.P., Podlipskii M.Yu., Polyakov G.V., Palesskii S.V. Geochemistry of accessory chrome-spinellides from rocks of the Ergakskii chrome-bearing hyperbasite massif (Western Sayan) and conditions of its formation. Doklady Earth Sci. 2008. Vol. 423. N 1. P. 1245–1249.
  13. Makeyev A.B. Forms of occurrence of platinoides in alpine-type ultrabasites of the Urals. In: Geology and genesis of platinum metal deposits. Moscow: Nauka, 1994. P. 175–183 (in Russian).
  14. Makeyev A.B. Mineralogy of alpine-type ultrabasites of the Urals. Saint Petersburg: Nauka, 1992. 197 p. (in Russian).
  15. Makeyev A.B., Brianchaninova N.I. Native platinum group metals in bedrock ores and placers of the Polar, Subpolar, Northern Urals and Timan. In: Ultramafic-mafic complexes: geology, structure, ore potential. Ulan-Ude: Publishing house of Buryat State University, 2017. P. 185–188 (in Russian).
  16. Makeyev A.B., Brianchaninova N.I. Topomineralogy of ultramafic rocks of the Polar Urals. Saint Petersburg: Nauka, 1999. 252 p. (in Russian).
  17. Makeyev A.B., Brianchaninova N.I., Kraplya E.A. Geological and mineralogical model of evolution of platinum-bearing alpine-type ultrabasites of the Urals. In: Platinum of Russia. Vol. IV. Moscow: Geoinformmark, 1999. P. 176–183 (in Russian).
  18. Makeyev A.B., Kotov A.A., Begizov V.D., Karachentsev S.G., Vyalsov L.N. Composition and properties of platinum group metals of Pt–Ru–Os–Ir system from alluvial deposits of the Urals. In: Mineralogical crystallography and properties of minerals. Trans. Inst. Geol. Komi branch USSR Acad. Sci. Syktyvkar, 1984. P. 95–103 (in Russian).
  19. Makeyev A.B., Perevozchikov B.V., Afanasyev A.K. Chromite content of the Polar Urals. Syktyvkar: Komi Branch of the USSR Acad. Sci., 1985. 152 p. (in Russian).
  20. Malitch K.N., Anikina E.V., Badanina I.Y., Pushkarev E.V., Khiller V.V., Belousova E.A. Chemical composition and osmium-isotope systematics of primary and secondary PGM assemblages from high-Mg chromitite of the Nurali lherzolite massif, the South Urals, Russia. Geol. Ore Deposits. 2016. Vol. 58. N 1. P. 1–19.
  21. Melcher F., Grum W., Simon G., Thalhammer T.V., Stumpfl E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J. Petrol. 1997. Vol. 38. P. 1419–1458.
  22. Murzin V.V., Malich K.N., Badanina I.Yu., Varlamov D.A., Chashchukhin I.S. Mineral associations of chromitites of the Alapaevsky dunite-harzburgite massif (Middle Urals). Lithosphere. 2023. Vol. 23. N 5. P. 740–765 (in Russian).
  23. Murzin V.V., Sustavov S.G. New data on minerals of the laurite-erlichmanite series and on their arsenic varieties. Doklady Earth Sci. 2000. Vol. 370. N 3. P. 160–162.
  24. Mysen B.O., Kushiro I. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Amer. Miner. 1977. Vol. 62. N 9/10. P. 843–856.
  25. Nikolskaya N.E., Kazennova A.D., Nikolaev V.I. Typomorphism of ore-forming chromospinelide of chrome ore deposits. Moscow: VIMS, 2021. 238 p. (in Russian).
  26. Pašava J., Knesl I., Vymazalova A., Vavrin I., Gurskaya L.I., Kolantsev L.R. Geochemistry and mineralogy of platinum-group elements (PGE) in chromites from Centralnoye I, Polar Urals, Russia. Geosci. Frontiers. 2011. Vol. 2. N 1. P. 81–85
  27. Pavlov N.V. Chemical composition of chromospinelides in connection with the petrographic composition of rocks of ultrabasic intrusives. Proc. Geol. Inst. USSR Acad. Sci. 1949. Vol. 103. P. 1–91 (in Russian).
  28. Perevozchikov B.V. Peculiarities of studying the chromite-bearing of alpine-type hyperbasites. Moscow: Geoinformmark, 1998. 47 p. (in Russian).
  29. Perevozchikov B.V., Bulykin L.D., Popov I.I., Orfanitsky V.L., Andreev M.I., Snachev V.I., Danilenko S.A., Cherkasov V.L., Chentsov A.M., Zharikova L.N., Klochko A.A. Register of chromite occurrences in alpine-type ultrabasites of the Urals. Perm: KamNIIKIGS, 2000. 474 p. (in Russian).
  30. Savelyeva G.N. Gabbro-ultramafic complexes of ophiolites of the Urals and their analogues in modern oceanic crust. Moscow: Nauka, 1987. 230 p. (in Russian).
  31. Shinkarev N.F., Ivanikov V.V. Physicochemical petrology of igneous rocks. Leningrad: Nedra, 1983. 271 p. (in Russian).
  32. Shiryaev P.B. Oxythermobarometry, material composition and genetic characteristics of chromium ores of the Rai-Iz and Voykar-Syninsky massifs (the Polar Urals). Ph. D. thesis syn. Moscow, 2021. 24 p. (in Russian).
  33. Shmelev V.R. Mantle ultrabasites of ophiolite complexes in the Polar Urals: petrogenesis and geodynamic environments. Petrology. 2011. Vol. 19. N 6. P. 618–640.
  34. Smirnova T.A. Telluric iron in ultrabasic rocks of the Kempirsai pluton. Zapiski RMO (Proc. Russian Miner. Soc.). 1970. Part 99. N 6. P. 745–748 (in Russian).
  35. Stoсkman H.W., Hlava P.F. Platinum-group minerals in alpine chromitites from southwestern Oregon. Econ. Geol. 1984. Vol. 79. P. 491–508.
  36. Structure, evolution and minerageny of the hyperbasic massif Rai-Iz / Ed. By V.N. Puchkov, D.S. Steinberg. Sverdlovsk: Ural Branch of the USSR Acad. Sci, 1990. 226 p. (in Russian).
  37. Talhammer T.V. Association of minerals of platinum group in massive chromite ores of Kempirsai ophiolite complex (Southern Urals) as manifestation of mantle metasomatism. Zapiski RMO (Proc. Russian Miner. Soc.). 1996. Vol. 125. N 1. P. 25–36 (in Russian).
  38. Tolstykh N.D. Platinum mineralization of the Konder and Inagli massifs. Geosphere research. 2018. N 1. P. 17–32 (in Russian).
  39. Vakhrusheva N.V., Shiryaev P.B., Stepanov A.E., Bogdanova A.R. Petrology and chromite-bearing of the Rai-Iz ultramafic massif (Polar Urals). Ekaterinburg: IGG Ural Branch RAS, 2017. 265 p. (in Russian).
  40. Yang J., Meng F., Xu X., Robinson P.T., Dilek Y., Makeyev A.B., Wirth R., Wiedenbeck M., Cliff J. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research. 2015. Vol. 27. N 2. Р. 459–485.
  41. Yurichev A.N. Ore chromospinelides of the Syum-Keu and Kharcheruz massifs: chemistry and genetic nature, Polar Urals. Ores and Metals. 2017. N 2. P. 51–59 (in Russian).
  42. Yurichev A.N. Platinum group minerals in chromitites of the Agardag ultramafic massif (Tuva Republic): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Part 151. N 4. P. 56–69 (in Russian).
  43. Yurichev A.N., Chernyshov A.I. Platinoides of the Rh–Zn–Pt system from the chromitite ultramafic massif (the South Urals, Kazakhstan). Petrology of igneous and metamorphic complexes: Materials of the X All-Russian conference with international participation. Vol. 10. Tomsk: Publishing house of Tomsk CNTI, 2018. P. 445–446 (in Russian).
  44. Yurichev A.N., Chernyshov A.I., Korbovyak E.V. Platinum group minerals from chromitites of Kempirsai ultramafic massif (the South Urals, Kazakhstan): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2019. Vol. 148. N 2. P. 76–86 (in Russian).
  45. Yurichev A.N., Chernyshov A.I., Korbovyak E.V. Platinum-bearing of chromitites in the Kharcheruz ultramafic massif (the Polar Urals): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2020. Vol. 149. N 3. P. 38–53 (in Russian).
  46. Yurichev A.N., Chernyshov A.I., Korbovyak E.V. New data on the platinum-bearing potential of chromitites in the Kharcheruz ultramafic massif, Polar Urals. Geol. Ore Deposits. 2021. Vol. 63. N 7. Р. 706–716.
  47. Zaccarini F., Garuti G., Pushkarev E., Thalhammer O. Origin of platinum group minerals (PGM) inclusions in chromite deposits of the Urals. Minerals. 2018. Vol. 8. N 9. Paper 379.
  48. Zaccarini F., Pushkarev E.V., Garuti G. Platinum group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia). Ore Geol. Rev. 2008. Vol. 33. P. 20–30.
  49. Zaccarini F., Pushkarev E., Garuti G., Kazakov I. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia. Minerals. 2016. Vol. 6. Paper 108.
  50. Zhou M-F., Robinson P., Malpas J., Li Z. Podiform chromites in the Luobusa Ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. 1996. Vol. 37. P. 3–21.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic geological map of the Rai-Iz massif (after Kucherina et al., 1991), edited by authors. 1 – Quaternary deposits; 2 – undifferentiated Paleozoic volcanogenic-sedimentary complexes; 3 – undifferentiated Proterozoic metamorphic complexes; 4–11 – Voikaro-Rayiz ophiolite complex: 4–5 – dunite-wehrlite-clinopyroxenite structural-material complex (SMC): 4 – undifferentiated dunites, wehrlites, clinopyroxenites; 5 – gabbro, metagabbro; 6–9 – dunite-harzburgite SMC: 6 – depleted harzburgites with dunite component <10 %; 7 – depleted harzburgites with dunite component of 10–30 %; 8 – depleted harzburgites with dunite component >30 %; 9 – dunites with chromium chromospinelides; 10–11 – harzburgite SMC: 10 – undepleted harzburgites with dunite component <10 %; 11 – undepleted harzburgites with dunite component 10–30 %; 12 – faults; 13 – thrusts; 1 4 – chromium ore occurrences; 15 – chromium ore deposits: 15a – open, 15b – studied in this work. The inset shows diagram of the location of the Rai-Iz massif in structure of the Polar Urals. Ultramafic massifs: I – Syum-Keu, II – Kharcheruzsky, III – Rai-Iz, IV – Voykar-Syninsky.

Baixar (72KB)
3. Fig. 2. Microphotographs of moderately disseminated and massive chromite ores from the Central deposit (a–б, sample P-1 and sample P-2, respectively) and deposit No 214 (в–г, sample Y-340/7 and sample Y-325/1, respectively) of the Rai-Iz massif without analyzer (left) and with analyzer (right). Ol – olivine, Serp – serpentine, CrSp – chrome spinel.

Baixar (82KB)
4. Fig. 3. Composition of ore chrom spinels from the Central (ore body No 9) and No 214 deposits of the Rai-Iz massif on ternary classification diagram by N.V. Pavlov (Pavlov, 1949). 1 – chromite, 2 – subferrichromite, 3 – aluminochromite, 4 – subferrialumochromite, 5 – ferrialumochromite, 6 – subaluminoferrichromite, 7 – ferrichromite, 8 – chromopicotite, 9 – subferrichromopicotite, 10 – subalumochromomagnetite, 11 – chromomagnetites, 12 – picotite, 13 – magnetite.

Baixar (23KB)
5. Fig. 4. Microinclusions of minerals of native elements and laurite in moderately disseminated (sample Y-340/7) and massive (sample Y-4/3, sample Y-325/1) chrome ores of deposit No 214, Rai-Iz massif. BSE images.

Baixar (50KB)
6. Fig. 5. Microinclusions of minerals of native elements and their alloys in moderately disseminated (sample R-1) and massive (sample R-2) chrome ores of the Central deposit, in moderately disseminated (sample Y-340/7) and massive (sample Y-325/1) chrome ores of deposit № 214, Rai-Iz massif. BSE images.

Baixar (57KB)
7. Fig. 6. Microphotographs of accessory sulfides and sulfoarsenides of PGE in moderately disseminated (sample R-1) and massive (sample R-2, sample R-4) chrome ores of the Central deposit and in massive (sample Y-325/1) chrome ores of the deposit No 214, Rai-Iz massif. BSE images.

Baixar (28KB)
8. Fig. 7. Ternary diagrams for PGMs from chrome ores of the Rai-Iz massif: composition of native osmium, iridium and ruthenium (1), including those containing Fe, Ni and Cu impurities (2). Immiscibility field according to (Harris, Cabri, 1991) (a); composition of minerals of laurite-erlichmanite series (3), including arsenic-containing varieties (4) (б). Fields of compositions are contoured (red and blue circles – individual analyses) according to data from previous works: red field (Structure.., 1990; Anikina, 1995; Gurskaya et al., 2004;), blue field (Yang et al., 2015; Makeyev, Bryanchaninova, 2017).

Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».