Hybrid SIRS model of infection spread

Capa

Citar

Texto integral

Resumo

Purpose of this work is to build a model of the infection spread in the form of a system of differential equations that takes into account the inertial nature of the transfer of infection between individuals. Methods. The paper presents a theoretical and numerical study of the structure of the phase space of the system of ordinary differential equations of the mean field model. Results. A modified SIRS model of epidemic spread is constructed in the form of a system of ordinary differential equations of the third order. It differs from standard models by considering the inertial nature of the infection transmission process between individuals of the population, which is realized by introducing a «carrier agent» into the model. The model does not take into account the influence of the disease on the population size, while population density is regarded as a parameter influencing the course of the epidemic. The dynamics of the model shows a good qualitative correspondence with a variety of phenomena observed in the evolution of diseases. Discussion. The suggested complication of the standard SIRS model by adding to it an equation for the dynamics of the pathogen of infection presents prospects for its specification via more precise adjustment to specific diseases, as well as taking into account the heterogeneity in the distribution of individuals and the pathogen in space. Further modification of the model can go through complicating the function which defines the probability of infection, generation and inactivation of the pathogen, the influence of climatic factors, as well as by means of transition to spatially distributed systems, for example, networks of probabilistic cellular automata.

Sobre autores

Aleksej Shabunin

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Bibliografia

  1. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 326 с.
  2. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М.: Наука, 1991. 304 c.
  3. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42, no. 4. P. 599-653. doi: 10.1137/S0036144500371907.
  4. Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. М.: Мир, 2004. 784 c.
  5. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. Москва - Ижевск: Институт компьютерных исследований, 2003. 368 c.
  6. Serfling R. E. Methods for current statistical analysis of excess pneumonia-influenza deaths // Public Health Reports. 1963. Vol. 78, no. 6. P. 494-506. doi: 10.2307/4591848.
  7. Burkom H. S., Murphy S. P., Shmueli G. Automated time series forecasting for biosurveillance // Statistics in Medicine. 2007. Vol. 26, no. 22. P. 4202-4218. doi: 10.1002/sim.2835.
  8. Pelat C., Boelle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J. Online detection and quantification of epidemics // BMC Medical Informatics and Decision Making. 2007. Vol. 7. P. 29. doi: 10.1186/1472-6947-7-29.
  9. Boccara N., Cheong K. Automata network SIR models for the spread of infectious diseases in populations of moving individuals // Journal of Physics A: Mathematical and General. 1992. Vol. 25, no. 9. P. 2447-2461. doi: 10.1088/0305-4470/25/9/018.
  10. Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation // Ecological Modelling. 2000. Vol. 133, no. 3. P. 209-223. doi: 10.1016/S0304-3800(00)00294-5.
  11. Шабунин А. В. SIRS-модель распространения инфекций с динамическим регулированием численности популяции: Исследование методом вероятностных клеточных автоматов // Известия вузов. ПНД. 2019. T. 27, № 2. C. 5-20. doi: 10.18500/0869-6632-2019-27-2-5-20.
  12. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. ПНД. 2020. T. 28, № 4. С. 383-396. doi: 10.18500/0869-6632-2020-28-4-383-396.
  13. Фирсов О. В. Гибридное прогнозирование заболеваемости раком почки и смертности от него на основе нейросетевых и статистических технологий // Врач-аспирант. 2006. Т. 10, № 1. C. 15-32.
  14. Ефимова Н. В., Горнов А.Ю., Зароднюк Т. C. Опыт использования искусственных нейронных сетей при прогнозировании заболеваемости населения (на примере г. Братска) // Экология человека. 2010. № 3. C. 3-7.
  15. Белецкая C.Ю., Коровин В. Н., Родионов О. В. Разработка прогностических моделей развития заболеваемости детей в городском административном районе на основе нейросетевых технологий // Вестник Воронежского государственного технического университета. 2010. Т. 6, № 12. C. 201-205.
  16. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proc. R. Soc. Lond. A. 1927. Vol. 115, no. 772. P. 700-721. doi: 10.1098/rspa.1927.0118.
  17. Hamer W. H. The Milroy lectures on epidemic disease in England: The evidence of variability and persistence of type // The Lancet. 1906. Vol. 1. P. 733-739.
  18. Hutchinson G. E. Circular casual systems in ecology // Annals of the New York Academy of Sciences. 1948. Vol. 50, no. 4. P. 221-246. doi: 10.1111/j.1749-6632.1948.tb39854.x.
  19. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Netherlands: Springer, 1992. 502 p. doi: 10.1007/978-94-015-7920-9.
  20. Пеpеваpюxа А.Ю. Непрерывная модель трех сценариев инфекционного процесса при факторах запаздывания иммунного ответа // Биофизика. 2021. Т. 66, № 2. С. 384-407. doi: 10.31857/S0006302921020204.
  21. Anderson R. M., May R. M. Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes // Mathematical Medicine and Biology: A Journal of the IMA. 1984. Vol. 1, no. 3. P. 233-266. doi: 10.1093/imammb/1.3.233.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».