Гибридная SIRS-модель распространения инфекций

Обложка

Цитировать

Полный текст

Аннотация

Цель - построение модели распространения инфекции в виде системы дифференциальных уравнений, учитывающей инерционный характер передачи инфекции между особями. Методы. В работе проводится теоретическое и численное исследование устройства фазового пространства системы обыкновенных дифференциальных уравнений модели среднего поля. Результаты. Построена модифицированная SIRS-модель распространения эпидемий в виде системы обыкновенных дифференциальных уравнений третьего порядка. От стандартных моделей она отличается учетом инерционного характера процесса передачи инфекции между особями популяции, что реализуется посредством введения в модель "агента-переносчика&". В модели не учитывается влияние заболевания на численность популяции, при этом плотность населения рассматривается как параметр, влияющий на ход эпидемии. Динамика модели демонстрирует хорошее качественное соответствие с рядом наблюдаемых при развитии заболеваний явлений. Обсуждение. Предложенное усложнение стандартной SIRS-модели посредством добавления в него уравнения для динамики возбудителя инфекции предоставляет перспективы для ее уточнения посредством более точной настройки на конкретные заболевания, а также для учета неоднородности в распределении особей и возбудителя в пространстве. Модификация модели может идти по пути усложнения вида функций, регулирующих вероятность заражения, генерации и инактивации возбудителя, влияния климатических факторов и т. п., а также по пути перехода к пространственно распределенным системам, например решеткам вероятностных клеточных автоматов.

Об авторах

Алексей Владимирович Шабунин

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

410012, Россия, Саратов, ул. Астраханская, 83

Список литературы

  1. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 326 с.
  2. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М.: Наука, 1991. 304 c.
  3. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42, no. 4. P. 599-653. doi: 10.1137/S0036144500371907.
  4. Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. М.: Мир, 2004. 784 c.
  5. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. Москва - Ижевск: Институт компьютерных исследований, 2003. 368 c.
  6. Serfling R. E. Methods for current statistical analysis of excess pneumonia-influenza deaths // Public Health Reports. 1963. Vol. 78, no. 6. P. 494-506. doi: 10.2307/4591848.
  7. Burkom H. S., Murphy S. P., Shmueli G. Automated time series forecasting for biosurveillance // Statistics in Medicine. 2007. Vol. 26, no. 22. P. 4202-4218. doi: 10.1002/sim.2835.
  8. Pelat C., Boelle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J. Online detection and quantification of epidemics // BMC Medical Informatics and Decision Making. 2007. Vol. 7. P. 29. doi: 10.1186/1472-6947-7-29.
  9. Boccara N., Cheong K. Automata network SIR models for the spread of infectious diseases in populations of moving individuals // Journal of Physics A: Mathematical and General. 1992. Vol. 25, no. 9. P. 2447-2461. doi: 10.1088/0305-4470/25/9/018.
  10. Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation // Ecological Modelling. 2000. Vol. 133, no. 3. P. 209-223. doi: 10.1016/S0304-3800(00)00294-5.
  11. Шабунин А. В. SIRS-модель распространения инфекций с динамическим регулированием численности популяции: Исследование методом вероятностных клеточных автоматов // Известия вузов. ПНД. 2019. T. 27, № 2. C. 5-20. doi: 10.18500/0869-6632-2019-27-2-5-20.
  12. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. ПНД. 2020. T. 28, № 4. С. 383-396. doi: 10.18500/0869-6632-2020-28-4-383-396.
  13. Фирсов О. В. Гибридное прогнозирование заболеваемости раком почки и смертности от него на основе нейросетевых и статистических технологий // Врач-аспирант. 2006. Т. 10, № 1. C. 15-32.
  14. Ефимова Н. В., Горнов А.Ю., Зароднюк Т. C. Опыт использования искусственных нейронных сетей при прогнозировании заболеваемости населения (на примере г. Братска) // Экология человека. 2010. № 3. C. 3-7.
  15. Белецкая C.Ю., Коровин В. Н., Родионов О. В. Разработка прогностических моделей развития заболеваемости детей в городском административном районе на основе нейросетевых технологий // Вестник Воронежского государственного технического университета. 2010. Т. 6, № 12. C. 201-205.
  16. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proc. R. Soc. Lond. A. 1927. Vol. 115, no. 772. P. 700-721. doi: 10.1098/rspa.1927.0118.
  17. Hamer W. H. The Milroy lectures on epidemic disease in England: The evidence of variability and persistence of type // The Lancet. 1906. Vol. 1. P. 733-739.
  18. Hutchinson G. E. Circular casual systems in ecology // Annals of the New York Academy of Sciences. 1948. Vol. 50, no. 4. P. 221-246. doi: 10.1111/j.1749-6632.1948.tb39854.x.
  19. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Netherlands: Springer, 1992. 502 p. doi: 10.1007/978-94-015-7920-9.
  20. Пеpеваpюxа А.Ю. Непрерывная модель трех сценариев инфекционного процесса при факторах запаздывания иммунного ответа // Биофизика. 2021. Т. 66, № 2. С. 384-407. doi: 10.31857/S0006302921020204.
  21. Anderson R. M., May R. M. Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes // Mathematical Medicine and Biology: A Journal of the IMA. 1984. Vol. 1, no. 3. P. 233-266. doi: 10.1093/imammb/1.3.233.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».