Cubic spline interpolation of functions with high gradients in boundary layers


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.

Авторлар туралы

I. Blatov

Volga State University of Telecommunications and Informatics

Хат алмасуға жауапты Автор.
Email: blatow@mail.ru
Ресей, Samara, 443090

A. Zadorin

Sobolev Institute of Mathematics (Omsk Branch), Siberian Branch

Хат алмасуға жауапты Автор.
Email: zadorin@ofim.oscsbras.ru
Ресей, Omsk, 644043

E. Kitaeva

Samara State University

Email: zadorin@ofim.oscsbras.ru
Ресей, Samara, 443086

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017