Cubic spline interpolation of functions with high gradients in boundary layers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.

作者简介

I. Blatov

Volga State University of Telecommunications and Informatics

编辑信件的主要联系方式.
Email: blatow@mail.ru
俄罗斯联邦, Samara, 443090

A. Zadorin

Sobolev Institute of Mathematics (Omsk Branch), Siberian Branch

编辑信件的主要联系方式.
Email: zadorin@ofim.oscsbras.ru
俄罗斯联邦, Omsk, 644043

E. Kitaeva

Samara State University

Email: zadorin@ofim.oscsbras.ru
俄罗斯联邦, Samara, 443086

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017