The Bauer-Type Factorization of Matrix Polynomials Revisited and Extended
- Authors: Malyshev A.1, Sadkane M.2
-
Affiliations:
- University of Bergen, Department of Mathematics
- Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique
- Issue: Vol 58, No 7 (2018)
- Pages: 1025-1034
- Section: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179687
- DOI: https://doi.org/10.1134/S0965542518070126
- ID: 179687
Cite item
Abstract
For a Laurent polynomial \(a(\lambda )\), which is Hermitian and positive definite on the unit circle, the Bauer method provides the spectral factorization \(a(\lambda ) = p(\lambda )p{\kern 1pt} {\text{*}}({{\lambda }^{{ - 1}}})\), where \(p(\lambda )\) is a polynomial having all its roots outside the unit circle. Namely, as the size of the banded Hermitian positive definite Toeplitz matrix associated with the Laurent polynomial increases, the coefficients at the bottom of its Cholesky lower triangular factor tend to the coefficients of \(p(\lambda )\). We study extensions of the Bauer method to the non-Hermitian matrix case. In the Hermitian case, we give new convergence bounds with computable coefficients.
About the authors
Alexander Malyshev
University of Bergen, Department of Mathematics
Author for correspondence.
Email: alexander.malyshev@math.uib.no
Norway, Bergen, Postbox 7803, , 5020
Miloud Sadkane
Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique
Author for correspondence.
Email: miloud.sadkane@univ-brest.fr
France, Brest Cedex 3,
6, Av. Le Gorgeu, 29238
Supplementary files
