The Bauer-Type Factorization of Matrix Polynomials Revisited and Extended
- 作者: Malyshev A.1, Sadkane M.2
-
隶属关系:
- University of Bergen, Department of Mathematics
- Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique
- 期: 卷 58, 编号 7 (2018)
- 页面: 1025-1034
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179687
- DOI: https://doi.org/10.1134/S0965542518070126
- ID: 179687
如何引用文章
详细
For a Laurent polynomial \(a(\lambda )\), which is Hermitian and positive definite on the unit circle, the Bauer method provides the spectral factorization \(a(\lambda ) = p(\lambda )p{\kern 1pt} {\text{*}}({{\lambda }^{{ - 1}}})\), where \(p(\lambda )\) is a polynomial having all its roots outside the unit circle. Namely, as the size of the banded Hermitian positive definite Toeplitz matrix associated with the Laurent polynomial increases, the coefficients at the bottom of its Cholesky lower triangular factor tend to the coefficients of \(p(\lambda )\). We study extensions of the Bauer method to the non-Hermitian matrix case. In the Hermitian case, we give new convergence bounds with computable coefficients.
作者简介
Alexander Malyshev
University of Bergen, Department of Mathematics
编辑信件的主要联系方式.
Email: alexander.malyshev@math.uib.no
挪威, Bergen, Postbox 7803, , 5020
Miloud Sadkane
Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique
编辑信件的主要联系方式.
Email: miloud.sadkane@univ-brest.fr
法国, Brest Cedex 3,
6, Av. Le Gorgeu, 29238
补充文件
