The Bauer-Type Factorization of Matrix Polynomials Revisited and Extended


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a Laurent polynomial \(a(\lambda )\), which is Hermitian and positive definite on the unit circle, the Bauer method provides the spectral factorization \(a(\lambda ) = p(\lambda )p{\kern 1pt} {\text{*}}({{\lambda }^{{ - 1}}})\), where \(p(\lambda )\) is a polynomial having all its roots outside the unit circle. Namely, as the size of the banded Hermitian positive definite Toeplitz matrix associated with the Laurent polynomial increases, the coefficients at the bottom of its Cholesky lower triangular factor tend to the coefficients of \(p(\lambda )\). We study extensions of the Bauer method to the non-Hermitian matrix case. In the Hermitian case, we give new convergence bounds with computable coefficients.

作者简介

Alexander Malyshev

University of Bergen, Department of Mathematics

编辑信件的主要联系方式.
Email: alexander.malyshev@math.uib.no
挪威, Bergen, Postbox 7803, , 5020

Miloud Sadkane

Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique

编辑信件的主要联系方式.
Email: miloud.sadkane@univ-brest.fr
法国, Brest Cedex 3, 6, Av. Le Gorgeu, 29238

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018