Local Bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky Equations and in Their Generalizations
- Авторы: Kulikov A.N.1, Kulikov D.A.1
-
Учреждения:
- Yaroslavl State University
- Выпуск: Том 59, № 4 (2019)
- Страницы: 630-643
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180520
- DOI: https://doi.org/10.1134/S0965542519040080
- ID: 180520
Цитировать
Аннотация
A periodic boundary value problem for a nonlinear evolution equation that takes the form of such well-known equations of mathematical physics as the Cahn–Hilliard, Kuramoto–Sivashinsky, and Kawahara equations for specific values of its coefficients is studied. Three bifurcation problems arising when the stability of the spatially homogeneous equilibrium states changes are studied. The analysis of these problems is based on the method of invariant manifolds, the normal form techniques for dynamic systems with an infinite-dimensional space of initial conditions, and asymptotic methods of analysis. Asymptotic formulas for the bifurcation solutions are found, and stability of these solutions is analyzed. For the Kuramoto–Sivashinsky and Kawahara equations, it is proved that a two-dimensional local attractor exists such that all solutions on it are unstable in Lyapunov’s sense.
Ключевые слова
Об авторах
A. Kulikov
Yaroslavl State University
Автор, ответственный за переписку.
Email: anat_kulikov@mail.ru
Россия, Yaroslavl, 150003
D. Kulikov
Yaroslavl State University
Email: anat_kulikov@mail.ru
Россия, Yaroslavl, 150003
Дополнительные файлы
