Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 59, № 4 (2019)

Article

Stability of a Difference Scheme for a Quasi-Linear Partial Differential Algebraic System of Equations of Index (k, 0)

Svinina S., Svinin A.

Аннотация

A quasi-linear partial differential algebraic system of equations of index \((k,0)\) is considered. A spline collocation difference scheme with a split matrix pencil is constructed to numerically solve a system of this kind. The difference scheme has a high accuracy coinciding with the lowest order of the spline approximating the required function. Results of numerical calculations are given.

Computational Mathematics and Mathematical Physics. 2019;59(4):513-528
pages 513-528 views

Asymptotic Solution of the Helmholtz Equation in a Three-Dimensional Layer of Variable Thickness with a Localized Right-Hand Side

Petrov P., Dobrokhotov S.

Аннотация

The asymptotics of the solution to the Helmholtz equation in a three-dimensional layer of variable thickness with a localized right-hand side in the absence of “trap” states and under the asymptotic radiation conditions at infinity is constructed. The wave part of the solution has a finite number of modes. The resulting formula makes sufficiently clear the influence of the shape of the source on the wave part of the solution.

Computational Mathematics and Mathematical Physics. 2019;59(4):529-541
pages 529-541 views

Approximate Solution of Differential Equations with the Help of Rational Spline Functions

Magomedova V., Ramazanov A.

Аннотация

For twice continuously differentiable functions on an interval and for their derivatives up to the second order, estimates are obtained for their joint uniform approximations by rational interpolation splines and their corresponding derivatives. These estimates are used to construct approximate twice differentiable solutions of boundary value problems and an initial value problem for some second-order linear differential equations.

Computational Mathematics and Mathematical Physics. 2019;59(4):542-549
pages 542-549 views

Existence of a Solution of the Inverse Coefficient Problem for a Quasilinear Hyperbolic Equation

Denisov A.

Аннотация

A problem with data on the characteristics for a quasilinear hyperbolic equation is considered. An inverse problem consisting in determining the unknown coefficient of the equation, depending on its solution, is formulated. As additional information for the inverse problem, the values of the solution of the problem with the data on the characteristics at a fixed value of one of the independent variables are specified. The existence theorem for the inverse problem is proved. The proof is based on deriving a nonlinear operator equation for the unknown coefficient and the proof of its solvability.

Computational Mathematics and Mathematical Physics. 2019;59(4):550-558
pages 550-558 views

Analytical Solution of Lamb’s Problem in the Case of a Limiting Poisson Ratio

Il’yasov K., Kravtsov A., Kuznetsov S., Sekerzh-Zenkovich S.

Аннотация

Lamb’s problem for a force applied to the boundary of an elastic half-space is considered in the case of a limiting Poisson ratio of 1/2. The solution is represented in the form of contour integrals, for which asymptotic estimates for large values of the polar radius are given.

Computational Mathematics and Mathematical Physics. 2019;59(4):559-572
pages 559-572 views

Asymptotic Stability of a Stationary Solution of a Multidimensional Reaction–Diffusion Equation with a Discontinuous Source

Levashova N., Nefedov N., Orlov A.

Аннотация

A two-dimensional reaction–diffusion equation in a medium with discontinuous characteristics is considered; the existence, local uniqueness, and asymptotic stability of its stationary solution, which has a large gradient at the interface, is proved. This paper continues the authors’ works concerning the existence and stability of solutions with internal transition layers of boundary value problems with discontinuous terms to multidimensional problems. The proof of the existence and stability of a solution is based on the method of upper and lower solutions. The methods of analysis proposed in this paper can be generalized to equations of arbitrary dimension of the spatial variables, as well as to more complex problems, e.g., problems for systems of equations. The results of this work can be used to develop numerical algorithms for solving stiff problems with discontinuous coefficients.

Computational Mathematics and Mathematical Physics. 2019;59(4):573-582
pages 573-582 views

Blow-up of Solutions of Nonclassical Nonlocal Nonlinear Model Equations

Korpusov M.

Аннотация

For a nonlinear nonlocal operator differential equation of the first order, an abstract Cauchy problem is considered that is a generalization of certain model physical examples. For this problem, the existence of a nonextendable (in time) classical solution is proved. Additionally, finite-time blow-up results are obtained under certain sufficient conditions, and bilateral estimates for the blow-up time are derived. Finally, under certain conditions, the problem is proved to be globally well posed regardless of the value of the initial function.

Computational Mathematics and Mathematical Physics. 2019;59(4):583-609
pages 583-609 views

Plane-Parallel and Axisymmetric Flows with a Straight Sonic Line

Kraiko A., Tillyayeva N., Shamardina T.

Аннотация

Features of plane-parallel and axisymmetric flows of an ideal (inviscid and non-heat-conducting) gas with a straight sonic line are studied. The flows under study occur in symmetric and asymmetric plane nozzles and axisymmetric nozzles with circular and annular cross sections. The acceleration and deceleration of flows when a straight sonic line is approached or receded from are studied. Additionally, sonic streamlines are constructed, including a contour of a sonic central body, i.e., a sonic streamline starting at the point of a straight sonic line on the axis of symmetry. The capabilities of the developed approaches are illustrated by examples, which are of interest in themselves.

Computational Mathematics and Mathematical Physics. 2019;59(4):610-629
pages 610-629 views

Local Bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky Equations and in Their Generalizations

Kulikov A., Kulikov D.

Аннотация

A periodic boundary value problem for a nonlinear evolution equation that takes the form of such well-known equations of mathematical physics as the Cahn–Hilliard, Kuramoto–Sivashinsky, and Kawahara equations for specific values of its coefficients is studied. Three bifurcation problems arising when the stability of the spatially homogeneous equilibrium states changes are studied. The analysis of these problems is based on the method of invariant manifolds, the normal form techniques for dynamic systems with an infinite-dimensional space of initial conditions, and asymptotic methods of analysis. Asymptotic formulas for the bifurcation solutions are found, and stability of these solutions is analyzed. For the Kuramoto–Sivashinsky and Kawahara equations, it is proved that a two-dimensional local attractor exists such that all solutions on it are unstable in Lyapunov’s sense.

Computational Mathematics and Mathematical Physics. 2019;59(4):630-643
pages 630-643 views

On the Solvability of the Problem of Electromagnetic Wave Diffraction by a Layer Filled with a Nonlinear Medium

Kurseeva V., Smirnov Y., Smolkin E.

Аннотация

The problem of diffraction of a polarized electromagnetic wave by a layer filled with a nonlinear medium is considered. The layer is located between two half-spaces with constant permittivities. Two widely used types of nonlinearities: saturation nonlinearity and Kerr nonlinearity are considered. It is proved that the results on the solvability of the problems in these cases are qualitatively different: in the case of saturation nonlinearity, there are conditions under which the diffraction problem has a unique solution and, in the case of Kerr nonlinearity, the diffraction problem always has an infinite set of solutions. Analytical and numerical methods for solving this kind of problems are developed. Numerical results are presented.

Computational Mathematics and Mathematical Physics. 2019;59(4):644-658
pages 644-658 views

Solution of a Contact Elasticity Problem with a Rigid Inclusion

Namm R., Tsoy G.

Аннотация

An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.

Computational Mathematics and Mathematical Physics. 2019;59(4):659-666
pages 659-666 views

Influence of Inertia of a Compliant Surface on Viscous Instability of an Incompressible Boundary Layer

Savenkov I.

Аннотация

An incompressible boundary layer on a compliant plate is considered. The influence exerted by the inertia of the plate on the stability of the boundary layer is studied in the limit of high Reynolds numbers on the basis of triple-deck theory. The flow is found to have two additional oscillation eigenmodes, one of which is always unstable, but grows more slowly than classical modes corresponding to Tollmien–Schlichting waves. It is shown that, with decreasing inertia of the plate, the perturbations first split into two wave packets, which later merge in a single one that grows progressively more quickly.

Computational Mathematics and Mathematical Physics. 2019;59(4):667-675
pages 667-675 views

Optimization of the Number and Arrangement of Circles of Two Radii for Forming a k-Covering of a Bounded Set

Galiev S., Khorkov A.

Аннотация

A numerical method for investigating k-coverings of a convex bounded closed set with nonempty interior with circles of two given radii is proposed. An algorithm for finding an approximate number of such circles and the arrangement of their centers is described. For certain specific cases, approximate lower bounds of the density of the k-covering of the given domain are found. Cases with constraints on the distances between the covering circle centers and problems with a variable (given) covering multiplicity are also considered. Numerical results demonstrating the effectiveness of the proposed methods are presented.

Computational Mathematics and Mathematical Physics. 2019;59(4):676-687
pages 676-687 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».