Solving boundary value problems of mathematical physics using radial basis function networks


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A neural network method for solving boundary value problems of mathematical physics is developed. In particular, based on the trust region method, a method for learning radial basis function networks is proposed that significantly reduces the time needed for tuning their parameters. A method for solving coefficient inverse problems that does not require the construction and solution of adjoint problems is proposed.

Sobre autores

V. Gorbachenko

Penza State University

Autor responsável pela correspondência
Email: gorvi@mail.ru
Rússia, Penza, 440026

M. Zhukov

Penza State University

Email: gorvi@mail.ru
Rússia, Penza, 440026

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017