The Bauer-Type Factorization of Matrix Polynomials Revisited and Extended


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a Laurent polynomial \(a(\lambda )\), which is Hermitian and positive definite on the unit circle, the Bauer method provides the spectral factorization \(a(\lambda ) = p(\lambda )p{\kern 1pt} {\text{*}}({{\lambda }^{{ - 1}}})\), where \(p(\lambda )\) is a polynomial having all its roots outside the unit circle. Namely, as the size of the banded Hermitian positive definite Toeplitz matrix associated with the Laurent polynomial increases, the coefficients at the bottom of its Cholesky lower triangular factor tend to the coefficients of \(p(\lambda )\). We study extensions of the Bauer method to the non-Hermitian matrix case. In the Hermitian case, we give new convergence bounds with computable coefficients.

Sobre autores

Alexander Malyshev

University of Bergen, Department of Mathematics

Autor responsável pela correspondência
Email: alexander.malyshev@math.uib.no
Noruega, Bergen, Postbox 7803, , 5020

Miloud Sadkane

Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique

Autor responsável pela correspondência
Email: miloud.sadkane@univ-brest.fr
França, Brest Cedex 3, 6, Av. Le Gorgeu, 29238

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018