Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 64, No 6 (2017)

Reviews

Suspension-cultured plant cells as a platform for obtaining recombinant proteins

Zagorskaya A.A., Deineko E.V.

Abstract

Production of recombinant proteins in suspension cultures of genetically modified plant cells is a promising and rapidly developing area of plant biotechnology. In the present review article, advantages related to using plant systems for expression of recombinant proteins are considered. Here, the main focus is covering the literature on optimization of cultivation conditions of suspension-cultured plant cells to obtain a maximal yield of target proteins. In particular, certain examples of successful use of such cells to produce pharmaceuticals were described.

Russian Journal of Plant Physiology. 2017;64(6):795-807
pages 795-807 views

Systemic use of “limping” enzymes in plant cell walls

Mokshina N.E., Nazipova A.R., Gorshkova T.A., Kozlova L.V.

Abstract

Diversity of proteins and enzymes engaged in carbohydrate metabolism is vast. This is related to the fact that plants contain the greater part of biospheric carbohydrates, whose structures are extremely diverse as well. In plant genomes, proteins involved in carbohydrate metabolism are grouped into numerous families, and each of them may include tens of sequences. This is especially typical of enzymes modifying polysaccharides of the cell wall. Expression of genes encoding such proteins is finely tuned. It may differ in different tissues and organs and depends on stages of development of the entire plant and its particular cells. However, certain genes, including highly expressive ones, encode enzymes with “limping” catalytic centers, which may be unable to conduct reactions characteristic of the particular enzymatic family. The review surveys examples of such proteins and discusses causes of their origin and possible functions.

Russian Journal of Plant Physiology. 2017;64(6):808-821
pages 808-821 views

Redox processes in biological systems

Pradedova E.V., Nimaeva O.D., Salyaev R.K.

Abstract

General principles of organization and distinctive features of the redox processes of biological systems are discussed. We paid special attention to the most examined parts of redox biology. As one of the approaches to the generalization of accumulated knowledge about redox processes, the so-called redox hypothesis of oxidative stress was examined. Extrapolation of this hypothesis on the processes taking place in plant cells, formulated on the basis of thiol-disulfide metabolism of animal cells, may help to systematize the available knowledge about redox processes in plants.

Russian Journal of Plant Physiology. 2017;64(6):822-832
pages 822-832 views

Research Papers

Nanocomplexes on the basis of Taunit associated with biocides as effective anti-cyanobacterial agents

Timofeeva A.V., Tashlitsky V.N., Tkachev A.G., Baratova L.A., Koksharova O.A.

Abstract

Cyanobacteria are photoautotrophic bacteria that are known also as blue-green algae. They accumulate on different surfaces and objects and contribute to their biodegradation. Moreover, cyanobacteria produce toxins, which lead to harmful environmental and human health impacts. Hence, cyanobacterial growth control problem is very vital. The goal of the study was to obtain new nanocomplexes on the basis of a modern nanomaterial Taunit associated with antibiotic chloramphenicol and herbicide diuron and to test their antimicrobial effect against a model organism such as the unicellular cyanobacterium Synechocystis sp. PCC 6803. A nanomaterial made of multiwalled carbon nanotubes (MWCNTs) called Taunit was used for the first time to obtain nanocomplexes coupled either with herbicide diuron (DCMU (3-(3,4-dichlorophenyl)- 1,1-dimethylurea) or with antibiotic chloramphenicol. A small amount of Taunit (~1 mg) was needed to adsorb micrograms of diuron or chloramphenicol. The new formed nanocomplexes differentiate in their antimicrobial activity, which could be explained by the difference in their chemical mechanism of action. Taunit − diuron complex showed a higher biocide action against cyanobacterium than the Taunit − chloramphenicol complex. The results allow to discuss the prospects of research on the use of Taunit − diuron complex as a coating for various surfaces exposed to cyanobacteria fouling.

Russian Journal of Plant Physiology. 2017;64(6):833-838
pages 833-838 views

Insights into the growth response and nitrogen accumulation and use efficiency of the Poaceae grass Brachypodium distachyon to high nitrogen availability

Barhoumi Z.

Abstract

Optimization of nitrogen (N) use by grasses is a central issue of the current work. The effects of different N concentrations (0, 0.25, 0.5, 1.0, 2.5, and 5.0 mM NH4NO3) on growth of Brachypodium distachyon were assessed on controlled hydroponic culture. Maximal growth (132% of control) was obtained at 0.5 mM NH4NO3, critical N level, and was maintained at higher N concentrations. The highest N level (5.0 mM) has a similar effect on growth as 0.5 mM NH4NO3. It has no significant effects on water status, and total and reduced N contents in shoots while, increased those in roots, compared to plants receiving 0.5 mM NH4NO3. The high N availability, however, increased nitrate contents in shoots and roots by 3- and 20-folds, respectively, compared to those of plant receiving 0.5 mM NH4NO3. In addition, high N availability reduced the nitrogen use efficiency (NUE) by 18% compared to that of plant receiving only 0.5 NH4NO3. In view of B. distachyon productivity and environmental concerns, it is concluded that the critical level of N application should be 0.5 mM NH4NO3 and the excess fertilization led to a high nitrate accumulation.

Russian Journal of Plant Physiology. 2017;64(6):839-844
pages 839-844 views

Actions of strigolactone GR24 and DRM1 gene expression on Arabidopsis root architecture

Tripepi A., Guglielminetti L.

Abstract

Strigolactones are mostly known for their influence on apical dominance, but new insights suggest that they may be involved in many other biological events including root development. DRM1 gene is ubiquitary expressed in plants but its role is not well known. In our experiments, the strigolactone analogue GR24 stimulated the expression of DRM1.1, DRM1.2, DRM1.4 splicing variants and inhibited root branching in 5-day-old Arabidopsis thaliana (L.) Heynh. seedlings. On the other hand, the expression of these splicing variants was lower in 10-day-old GR24-treated roots. DRM1.6 gene expression differently responded to GR24 than other DRM1 splicing variants, however, there was no clear relationship between DRM1.6 expression and root length. Our results suggest that strigolactones and the expression of DRM1 gene play interactive roles in root branching.

Russian Journal of Plant Physiology. 2017;64(6):845-849
pages 845-849 views

AlGLY I gene implicated in salt stress response from halophyte Aeluropus littoralis

Faraji S., Najafi-Zarrini H., Hashemi-Petroudi S.H., Ranjbar G.A.

Abstract

Aeluropus littoralis (Gouan) Parlatore is a rhizomatous perennial monocotyledonous halophyte that withstands environmental stresses. The role of the glyoxalase system, which plays an important role in carbohydrate metabolic process and compatible solutes production, in salt tolerance of A. littoralis was proved to be extremely momentous. Thus in the present study, a GLY I gene was isolated and sequenced from this plant (revealing the partial sequence of AlGLY I), and its expression profiling has been performed in response to salinity and recovery conditions, by fluorescent real-time PCR (qPCR). Experimental samples were prepared separately from shoot and root tissues after 600 mM NaCl treatment, as well as after stress removing. Maximum mRNA expression of GLY I, which was observed after 6 h salt stress in shoot tissue, was 5.9-fold higher compared to the control. Characterization of the partial sequence of AlGLY I gene, containing 896 bp, using publicly available databases demonstrated that the deduced transcripts, encoding 297 amino acids with a 32.5869 kD molecular mass including 5.19 isoelectric points, shared a high homology (~90%) to Oryza sativa GLY I protein. Setaria italica, Sorghum bicolor, Brachypodium distachyon, Triticum aestivum, and Hordeum vulgare with 86, 85, 84, 83 and 78%, respectively, also revealed high homology. The promoter analysis also showed the presence of various stress related CREs, which probably activate the AlGLY I gene transcription under abiotic stress conditions. These results suggested that AlGLY I may be a potentially useful candidate gene for engineering salinity tolerance in cultivated plants.

Russian Journal of Plant Physiology. 2017;64(6):850-860
pages 850-860 views

Salinity–induced modulations in the protective defense system and programmed cell death in Nostoc muscorum

Shamim A., Farooqui A., Siddiqui M.H., Mahfooz S., Arif J.

Abstract

To study the biochemical adaptive responses of the blue green algae Nostoc muscorum to the salinity- induced stress they were exposed to various concentrations (5, 10, 15, 20 or 200 mM) of sodium chloride (NaCl). A dose-dependent inhibition of total protein content showed an adverse effect of NaCl on the growth of N. muscorum. Four-day treatment of NaCl (5–20 mM) progressively increased the content of the total peroxide with subsequent increase of the superoxide dismutase (SOD) activity, proline and total phenol content only up to 10 mM NaCl. Higher concentrations of NaCl caused significant decrease in both the enzymatic and non-enzymatic antioxidants. Induction of two polypeptides of ~29.10 and 40.15 kD as well as upregulation of many polypeptides as compared to control indicates the induction of SOD and dehydrin-like proteins, which supports the theory of adaptation against the salt stress. Furthermore, adaptation of N. muscorum to lower concentrations (5–20 mM) of NaCl was also confirmed by no fragmentation of DNA while DNA fragmentation indicating programmed cell death (PCD) could only be seen at 200 mM NaCl for 12 hours. We hypothesized that proline may confer a positive role to combat salinity stress and the same was confirmed by treatment of the test blue green algae with exogenous proline (1 and 10 μM). The results exhibited 16% reduction in the level of total peroxides, which is a well known oxidative stress marker in the 10 μM proline-treated NaCl group as compared to direct exposure to NaCl.

Russian Journal of Plant Physiology. 2017;64(6):861-868
pages 861-868 views

Response of Triticum aestivum to boron stress

Leblebici S., Unal D.

Abstract

Despite the demonstration that proline accumulation and gene expression of Δ1-pyrroline-5-carboxylate synthase (p5cS) increased under osmotic stress, the impact of excess boron on proline metabolism is not well known. Therefore, we investigated the effect of different boron concentrations (10, 50, 70, 140 and 200 ppm) on seedlings root growth, lipid peroxidation rate, antioxidant enzyme activity (glutathione reductase (GR), ascorbate peroxidase (APX), catalase (CAT)), proline accumulation and transcription level of p5cS gene in Triticum aestivum L. AK-702. It was observed that seed germination and root growth in T. aestivum decreased depending on the concentration of boron. Our results indicated that boron toxicity induced lipid peroxidation and decreased GR activity under a high concentration of boron. However, the APX activity did not significantly change under high concentrations of boron (70, 140 and 200 ppm), while it increased under the lower levels of boron (10 and 50 ppm). In addition, excess boron enhanced CAT activity in the 200 ppm boron treated groups. Proline accumulation increased 2.25 and 1.45 fold in the 140 and 200 ppm boron applications. In addition, analyses of the mRNA transcription level using the semi-quantitative RTPCR results showed that excess boron increased the p5cS mRNA transcript levels and showed a positive correlation of these levels with proline accumulation in T. aestivum roots.

Russian Journal of Plant Physiology. 2017;64(6):869-875
pages 869-875 views

Expressions of glutathione-related genes and activities of their corresponding enzymes in leaves of tomato exposed to heavy metal

Kısa D.

Abstract

Plant development depends on the environmental conditions, and the accumulation of heavy metals in plant tissues causes various molecular and biochemical changes in plant life cycles. Plants have developed a number of detoxification mechanisms to tolerate oxidative damages in the unsuitable environments. GR and GST involved with glutathione are the key antioxidant defense enzymes in response to heavy metals stress. In the present study, mRNA expressions and activities of GR and GST enzymes are investigated in the leaves of tomato (Lycopersicon esculentum Mill.) increasing doses of Cd, Cu, and Pb. The transcriptional expression of GR and GST was analyzed by real-time quantitative PCR. GR and GST genes are induced compared to control in leaves of tomato by the application of heavy metals. The expression of GR usually significantly increased except for 10 ppm of Pb which there was no significant change in the low dose. The GST transcript significantly raised in all treatment of heavy metals. The highest expression of GR and GST was observed in the application of 20 and 50 ppm of Pb, respectively. The enzyme activities of GR and GST significantly increased by the application of Cd, Cu, and Pb, but GR activity remained constant at 50 ppm of Cu compared to control in leaves of tomato. The results presented in this study indicate that the transcript expressions show a correlation with enzymes activities with small differences because post-transcriptional factors might affect the enzymes activities.

Russian Journal of Plant Physiology. 2017;64(6):876-882
pages 876-882 views

Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress

Ulusu Y., Öztürk L., Elmastaş M.

Abstract

Parsley (Petroselinum hortense L.) plants cultivated under controlled conditions were exposed to different doses of cadmium to investigate the antioxidant capacity and cadmium accumulation in the samples. Two-months-old parsley seedlings were treated with four different concentrations of CdCl2 (0, 75, 150, and 300 μM) for fifteen days. Cadmium level in leaves increased significantly by increasing the Cd contamination in the soil. Total chlorophyll and carotenoid content declined considerably with Cd concentration. Cd treatment caused a significant increase lipid peroxidation in tissue of leaf. Superoxide dismutase activity (SOD, EC 1.15.1.1) increased partially at 75 and 150 μM CdCl2 concentrations whereas the activity decreased at 300 μM CdCl2. Catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were reduced by Cd application. Total phenolic compound amount increased significantly with increasing Cd concentration, as ferric reduction power, superoxide anion radical, and DPPH˙ free radical scavenging activities elevated slightly by the concentration. These results suggest that antioxidant enzymes activities were repressed depending on accumulation of cadmium in leaves of parsley while the non-enzymatic antioxidant activities slightly increased.

Russian Journal of Plant Physiology. 2017;64(6):883-888
pages 883-888 views

Differential response of antioxidative enzymes to various abiotic stresses in Pennisetum glaucum seedlings

Vijaya Lakshmi T., Varalaxmi Y., Yadav S.K., Maheswari M.

Abstract

Antioxidative enzyme activities and their isozyme patterns under water-deficit, salinity, high and low temperature stresses were studied in the seedlings of Pennisetum glaucum (L.) R.Br. It was observed that under water-deficit stress glutathione reductase (GR) was the key enzyme while in case of high temperature stress, GR along with catalase played a major role. Superoxide dismutase was found to be the main enzyme under low temperature stress. Co-ordinated higher expression of all the antioxidative enzymes was observed under salt stress. This study revealed the operation of different enzymatic antioxidative mechanisms under various abiotic stresses that will aid in understanding the metabolic basis of stress tolerance in pearl millet.

Russian Journal of Plant Physiology. 2017;64(6):889-898
pages 889-898 views

Antioxidative enzymes, calcium, and ABA signaling pathway are required for the stress tolerance of transgenic wheat plant by the ectopic expression of harpin protein fragment Hpa110–42 under heat stress

Wang D.F., Pang X.J., Yang F., Kou L.S., Zhang X., Yu P.X., Niu Y.B.

Abstract

Genetic engineering for heat stress tolerance can promote crop growth and improve yield. One wheat (Triticum aestivum L.) line Y16 (wild type) and two transgenic plants (Y16-3 and Y16-46) that express Hpa110-42, a functional fragment of harpin protein, were used in this study to investigate their possible abiotic stress tolerance under heat stress. Results showed that enhanced thermotolerance was observed in the Y16-3 and Y16-46 lines over the control wheat under stress conditions. However, this increased stress tolerance was significantly abolished by specific inhibitors such as fluridone or sodium tungstate (i.e., arrests abscisic acid (ABA) biosynthesis) and EGTA or La3+ (i.e., arrests Ca2+ signaling pathway) under heat exposure. By contrast, high activities of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase (but not peroxidase) and low levels of oxidative damage (thiobarbituric acid reactive substance (TBARS) and chlorophyll) were detected in transgenic wheat lines compared with the control plant under stress exposure. However, this significant difference diminished after the addition of these specific inhibitors. Furthermore, a slight increase of H2O2 was observed in the transgenic plant, instead of the control, without the addition of chemicals under heat stress. These results suggested that antioxidant enzymes, calcium, and ABA signaling pathways were involved in this Hpa110–42-mediated thermotolerance of transgenic wheat plants under stress exposure. Finally, a hypothetical model based on H2O2 signaling was proposed to illustrate the possible mechanism of this enhanced heat stress tolerance.

Russian Journal of Plant Physiology. 2017;64(6):899-905
pages 899-905 views

Ethylene-dependent adjustment of metabolite profiles in Arabidopsis thaliana seedlings during gravitropic response

Pozhvanov G.A., Klimenko N.S., Bilova T.E., Shavarda A.L., Medvedev S.S.

Abstract

Metabolite profile adjustments under impact of ethylene synthesis inhibitors were studied in Arabidopsis thaliana (L.) Heynh. seedlings during reorientation of plants relative to the gravity vector (gravistimulation). Metabolite profiles were compared with Principal Component Analysis. We have shown that significant changes in metabolite profiles developed within 60 min of gravistimulation and were most pronounced in 2 mm root tips including the root cap, apical meristem and elongation zone. Gravistimulation resulted in the increased levels of valine, leucine, serine, γ-aminobutyric acid, nicotinic acid, and decreased levels of several monosaccharides, malate and oxalate. Treatment with ethylene synthesis inhibitor, aminoethoxyvinylglycine (10 μM), escaped the effect of gravistimulation on root tip metabolite profile. Metabolite profile adjustments revealed in this study suggest that ethylene may be involved into the regulation of Arabidopsis metabolome during the gravitropic response.

Russian Journal of Plant Physiology. 2017;64(6):906-918
pages 906-918 views

24-epibrassinolide effects on in vitro callus tissue formation, growth, and regeneration in wheat varieties with contrasting drought resistance

Seldimirova O.A., Bezrukova M.V., Galin I.R., Lubyanova A.R., Shakirova F.M., Kruglova N.N.

Abstract

Effects were investigated of kinetin replacement on 24-epibrassinolide (24-EB) in the in vitro cultured embryonic explants that were obtained from two varieties of spring soft wheat (Triticum aestivum L.)— Bashkirskaya 26 (drought resistant) and Salavat Yulaev (weakly resistant), differing in drought resistance, on the calli formation, its growth indices, contents of ABA and cytokinins, morphological and histological parameters, as well as their regenerative capacity. The resistant Bashkirskaya 26 variety, in contrast to the Salavat Yulaev variety, was characterized by a significantly higher frequency of calli formation in the culture of immature embryos on the 24-EB induction medium, higher increase in fresh and dry weights, and a large number of morphogenetic centers. On the medium containing kinetin, the Salavat Yulaev calli were characterized by an increased level of ABA throughout the experiment with a maximum of 15–25 days, whereas, in the Bashkirskaya 26 calli, the maximum ABA accumulation occurred on the seventh to 11th day of cultivation, after which a decrease in the hormone content was observed. It was found that calli of both varieties cultivated on the 24-EB medium against the background of absence in the ABA content changes were characterized by an increased content of endogenous cytokinins, especially significant in Bashkirskaya 26 calli. Calli of both varieties were characterized by a high regenerative capacity in all the studied variants of the regeneration medium. At the same time, the maximum capacity for regeneration and formation of regenerants with a single callus were revealed by replacing kinetin with 24-EB, especially pronounced in a resistant variety. The combination of the results obtained demonstrates the efficacy of 24-EB introducing instead of kinetin into the in vitro culture medium for explants of two varieties of spring soft wheat that differ in drought resistance, as evidenced by an increase in the frequency of callus formation from immature embryos, as well as the number of morphogenetic centers in the resulting calli.

Russian Journal of Plant Physiology. 2017;64(6):919-929
pages 919-929 views

Transcription profiling analysis of genes and pathomechanisms underlying the defense response against Tobacco Etch Virus infection in Arabidopsis thaliana

Wu L.P., Gao X.L., Li H., Wu Z.H., Duan Y.D., Liu W., Li F.

Abstract

The aim of this study was to identify potential genes and mechanisms in Arabidopsis thaliana (L.) Heynh. in response to Tobacco Etch Virus (TEV) infection by bioinformatics methods. The transcription profile GSE37269 containing 28 TEV-At17b infected and 25 non-infected samples of A. thaliana was downloaded and used. Limma software in R language was used to identify differentially expressed genes (DEGs) between mock and infected samples, and Gene Ontology and pathway enrichment analysis of DEGs were performed. Protein-protein interaction (PPI) network was constructed by STRING database. Moreover, a weighted gene co-expression network of closely co-expressed DEGs was constructed. Total 1781 DEGs including 873 up-regulated and 908 down-regulated genes were obtained. Up-regulated DEGs were mainly enriched in response to reactive oxygen species, and phenylalanine metabolism as well as biosynthesis of phenylpropanoids, while down-regulated DEGs were mainly enriched in external encapsulating structure organization. Up-regulated genes of AT2G18690 and AT1G19020, down-regulated gene of LAC11 (laccase 11) and IRX12 (iroquois homeobox 12) were hub nodes in PPI network. A significant co-expressed module containing AT5G37485, AT4G36430 and ATH8 (thioredoxin H-type 8) was identified and genes of it were significantly enriched in cellular response to reactive oxygen species and oxidative stress. AT4G36430 and ATH8 in the response to hydrogen peroxide and oxidative stress, and some peroxidase-like genes in the secondary metabolic and phenylpropanoid biosynthesis, may be responsible for the antiviral response to TEV-At17b infection in A. thaliana.

Russian Journal of Plant Physiology. 2017;64(6):930-938
pages 930-938 views

Endowing plants with tolerance to virus infection by their preliminary treatment with short interfering RNAs

Sutula M.Y., Akbassova A.Z., Yergaliev T.M., Nurbekova Z.A., Mukiyanova G.S., Omarov R.T.

Abstract

RNA interference (RNAi) is one of the key defense mechanisms directed against virus infections in plants and other organisms. In this case in plants infected with viruses, short interfering RNAs (siRNAs) are formed from two-chain replicated forms of virus molecules of RNA. These siRNAs program one of the RNAi basic components, RNA-induced complex of genes silencing (RISC, RNA induced silencing complex) associated with sequence-specific removing virus RNA. Virus protein P19 is a suppressor of RNAi and is capable of trapping the siRNAs being formed before their binding with RISC. Here, it was shown that preliminary entering leaves of plants Nicotiana benthamiana Domin (before virus infecting) of siRNAs eluted from the complex P19/siRNA from the infected plant lowers development of infection symptoms induced by tomato bushy stunt virus (TBSV) in inoculated plants. Exogenous addition of suppressor-associated siRNAs to plants leads to not only lowering virus accumulation but also to survival of infected plants. Thus, it has been established that preliminary addition of virus siRNAs elevates plant tolerance to the virus infection by means of early programming RISC and activation of the defense action of RNAi.

Russian Journal of Plant Physiology. 2017;64(6):939-945
pages 939-945 views