


Vol 65, No 3 (2018)
- Year: 2018
- Articles: 16
- URL: https://journal-vniispk.ru/1021-4437/issue/view/11204
Reviews
Photorespiration: Its Role in the Productive Process and Evolution of С4 Plants
Abstract
The review surveys the modern concepts of photorespiration, its role in the productive process, redox-regulation, and integration of energy-transforming processes of the photosynthesizing cell and, also, in evolution of C4 plants. Special attention is given to methods to explore photorespiration. Principal strategies that are aimed at improvements in photosynthesis intensity and in plant growth by manipulations with photorespiration based on up-to-date technologies are considered.



Gene Network and Database for Genes of Wheat’s Resistance to Pathogenic Fungi
Abstract
An overview describing a gene network that controls the formation of plant responses to diseases caused by pathogenic fungi (http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet//viewer/Plant%20fungus%20pathogen.html) is presented. The gene network represents the coordinated interactions of genes, proteins, and regulatory molecules, including integrated defense mechanisms that prevent the development of infection, localize the lesion, and minimize damage. The gene network was reconstructed on the basis of literature data, and the elements of the gene network were associated with the records of the PGR database (Pathogenesis-Related Genes, http://srs6.bionet.nsc.ru/srs6bin/cgi-bin/wgetz?-page+top+-newId), where information on plant genes resistant to pathogenic fungi is accumulated. Reconstruction of the gene network allows us to formalize, visualize, and systematize possible mechanisms for the response of plant cells to fungal infection, which may be useful for the planning of experiments and interpretation of experimental data in this field of science.



Research Papers
De Novo Transcriptome Sequencing and Analysis to Identify Genes Involved in the Biosynthesis of Flavonoids in Abrus mollis Leaves
Abstract
Abrus mollis Hance is an endemic genuine medicinal material growing widely in Southern China. We used the next-generation sequencing technology to carry out de novo transcriptome sequencing and analysis of A. mollis leaves. 57669118 high quality reads and 53743 assembled unigenes were obtained. 36271 unigenes (67.49%) were annotated in the four public databases (NCBI-nr, Swiss-Prot, KEGG, and KOG). After comprehensive analysis of the A. mollis transcriptome, 35656 unigenes were classified into 25 KOG function classifications and 7572 unigenes were assigned to 128 different KEGG pathways. Then, the unigenes with their key enzymes in phenylalanine, phenylpropanoid, flavonoids and isoflavonoid biosynthesis pathway were investigated in KEGG pathways. The study results will be helpful to reveal the biosynthesis mechanism of flavonoids and isoflavonoid in A. mollis leaves and carry out its biological regulation research.



Effects of 6-Benzyladenine on Jatropha Gene Expression and Flower Development
Abstract
Jatropha curcas L. has been considered as a potential source of biodiesel feedstock due to its highly seed oil content. However, Jatropha exhibits low numbers of female flowers leading to insufficient seed yields for biodiesel production. Previous studies showed that application of 6-benzyladenine (BA) on Jatropha flower buds significantly increased female flower numbers and seed yield. However, the underlining molecular mechanism remained unclear. In this study, 160 mg/L of BA was applied on the Jatropha flower buds. As a result, BA significantly increased female flowers, male flowers, and seed yield (P < 0.05). BA also affected the inflorescences area, number and length of pedicel, all of which were appreciably greater than control (P < 0.05). The effect of BA to flower bud development was observed using Scanning Electron Microscope (SEM). SEM revealed that the stages of floral development between control and BA-treatment were similar indicating that BA might affect floral development at the transcriptomic level. Flower buds at 0, 4, and 24 h were selected based on the presence of sex organs for genes involved in flower development investigation. The expression analysis of 23 genes showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (JcCKX5) was highly expressed at the transition stage (P< 0.05) subsequently enhanced the inflorescences area, increased organogenic capacity and ovule primordia formation. Moreover, application of BA increased the expression of SUPERMAN (JcSUP) and decreased the expression of TASSELSEED2 (JcTS2) during sex organs differentiated stage. Therefore, JcSUP might play a role in female flower formation parallel with arrested stamen formation through the down-regulation of JcTS2.



DNA Methylation Differences in Soybean Hybrids and Their Parental Lines
Abstract
To understand the methylation level and genetic delivery from parental line to their hybrid in soybean (Glycine max (L.) Merr.), four groups of parental lines and their hybrids were analyzed using methylation sensitive amplification polymorphism (MSAP). Comparisons of the different methylation distributions revealed. (1) The methylation level of the whole hybrid was lower than that of the corresponding parent lines, and the internal cytosine-methylation pattern was dominant. (2) In this study, comparing the total methylation levels in hybrids and the midparent values we assume that the larger differences in DNA methylation between parental lines lead to stronger heterosis. (3) Four demethylated and one hyper-methylated fragments were sequenced and located in the reference genome by blast analysis. These methylation changes could cause expression levels changes of a protein kinase, zinc finger protein and a mitochondrial transcript, which would affect a variety of metabolic pathways in soybean, providing an explanation for the observed heterosis.



Characterization and Expression Pattern of a Putative Pectin Methylesterase Gene, BcMF27, in Brassica campestris ssp. chinensis
Abstract
Pectin methylesterases (PMEs) play an important role in modifying cell wall. PMEs catalyze the de-esterification of pectin, an important compound of cell wall, to affect fertility in plant reproduction. However, little especially molecular mechanism about pectin methylesterase is studied in recent years despite its importance to reproductive development in flower plant. Here the bioinformatics analysis of BcMF27 (Brassica campestris Male Fertility 27) (BRAD: Bra000541 GenBank: KT600012) sequence isolated from Brassica campestris L. ssp. chinensis showed its highly and characteristically conserved structure as a pectin methylesterase. Transient expression analysis in the onion epidermal cells revealed the product of BcMF27 was a transmembrane protein. Real-time RT-PCR and in situ hybridization suggested that BcMF27 was expressed in pollen grain and pollen tube. This study demonstrates that BcMF27 encodes a transmembrane pollen- and pollen tube-specific PME gene, and is also considered to help further understand the biological function of pectin methylesterases and the molecular mechanism of pollen development, pollen tube growth as a genic tool.



Physiological and Molecular Changes during Lily Underground Stem Axillary Bulbils Formation
Abstract
Lily is regarded as one kind of the most economically important cut flowers in China. In this paper, lily cultivar ‘Aladdin’ (Lilium longiflorum × Lilium asiatic) was chosen as experimental material for its distinct high propagation coefficient in nature and three main conclusions were achieved. Firstly, our observation results revealed that the noticeable propagation coefficient of ‘Aladdin’ depended on strong capacity to form many underground stem axillary bulbils positioned on underground node of plant after 70 days of cultivation and having 1 cm flower buds. Secondly, in terms of physiological changes, zeatin riboside (ZR) relative concentration, soluble sugar and starch content peak when and where such bulbils are forming. Finally, two KNOX family Lilium genes were sequenced completely and one BELL family gene was sequenced partly; besides, there might be an interaction between KNOX-2 and BELL protein to accomplish their functions in bulbils organogenesis according to qRT-PCR results. As far as we know, it is the first time to study the formation mechanism of lily underground stem axillary bulbils. We illustrated physiological and molecular profiles, as well as offered a new prospect to lily molecular breeding in the future.



Cytochalasin B Treatment of Apple (Malus pumila Mill.) Pollen Tubes Alters the Cytoplasmic Calcium Gradient and Causes Major Changes in the Cell Wall Components
Abstract
It is well established that the actin cytoskeleton is absolutely essential to pollen germination and tube growth. In this study we investigated the effects of cytochalasin B (CB), which affects actin polymerization by binding to the barbed end of actin filaments, on apple (Malus pumila Mill.) pollen tube growth. Results showed that CB altered the morphology of pollen tubes, which had a larger diameter than control tubes beside inhibiting pollen germination and tube growth. Meantime CB also caused an abnormal distribution of actin filaments in the shank of the treated pollen tubes. Fluo-3/AM labeling indicated that the gradient of cytosolic calcium ([Ca2+]c) in the pollen tube tip was abolished by exposure to CB, which induced a much stronger signal in the cytoplasm. Cellulose and callose distribution in the tube apex changed due to the CB treatment. Immunolabeling with different pectin and arabinogalactan protein (AGP) antibodies illustrated that CB induced an accumulation of pectins and AGPs in the tube cytoplasm and apex wall. The above results were further supported by Fourier-transform infrared (FTIR) analysis. The results suggest the disruption of actin can result in abnormal growth by disturbing the [Ca2+]c gradient and the distribution of cell wall components at the pollen tube apex.



Physiological Mechanisms of Solanum tuberosum L. Plants’ Tolerance to Chloride Salinity
Abstract
The mechanisms of potato (Solanum tuberosum L.) plants’ tolerance to chloride salinity were investigated in cv. Lugovskoi regionalized in Russia. Regenerated plants were produced in vitro from apical meristem and grown on half-strength Murashige and Skoog medium (0.5 MS) using a hydroponic unit in controlled-climate conditions. At the age of six weeks, the plants were exposed to salt stress (50–150 mM NaCl, 7 days). Plant response to salt stress was estimated by growth parameters (fresh and dry biomass of the aboveground and underground parts of plants, linear dimensions of shoot and root, area of leaf surface, and number of stolons) and physiological characteristics (level of photosynthetic pigments, accumulation of sodium, potassium, and calcium ions in the aboveground and underground parts of plants, content of proline, activity of antioxidant enzymes, plant tissue hydration, osmotic potential, and POL). It was found that, in response to salinity, the plants of potato, cv. Lugovskoi, showed a considerable inhibition of growth processes, reduction in chlorophyll a content, and suppression of stolon formation, which points to a rather low salinity tolerance of the cultivar. At the same time, under weak or moderate salt stress, the plants preserved water homeostasis owing to effective osmoregulation, actively accumulated proline that acted as a stress protector, and showed hardly any signs of oxidative stress. It was assumed that low salt tolerance of this cultivar depends on the inability of its root system to retain sodium ions and ensure selective ion transport to the aboveground part of the plant and on inefficiency of the system of sodium ions’ removal from the cytoplasm of leaf cells and their compartmentalization in the central vacuole with the purpose of reducing their toxic effect. The obtained results may be useful for working out a technique of improving salt tolerance of this cultivar by the methods of molecular genetics.



Xanthine Dehydrogenase Involves in the Response of Photosystem and Reactive Oxygen Metabolism to Drought Stress in Rice
Abstract
Xanthine dehydrogenase (XDH) is a crucial enzyme involved in purine metabolism. Although the essential role of XDH is well studied in leguminous plants and Arabidopsis, the importance of this enzyme remains uncertain in rice. To evaluate how biochemistry indicators respond to XDH down-regulation and up-regulation in rice seedings during drought stress, RNA interference (RNAi) and CDS over-expression were used to generate transgenic lines of Nipponbare (Oryza sativa L.) in which OsXDH, the gene for XDH were silenced and over-expression. When the XDH-suppressed line was subjected to drought stress, the chlorophyll content and chlorophyll fluorescence parameters were markedly reduced in conjunction with significantly O2− enhanced production rate and MDA accumulation. This drought-hypersensitive biochemistry indicators was reversed in XDH-intensified line. Meanwhile, the XDH activity and its downstream metabolites were induced by drought stress. These observations support the notion that xanthine dehydrogenase was involved in regulating photosystem and reactive oxygen metabolism in drought stress in rice seedling.



Effect of Salicylic and Jasmonic Acids on the Content of Hydrogen Peroxide and Transcriptional Activity of the Genes Encoding Defense Proteins in Wheat Plants Infected with Tilletia caries (DC.) Tull.
Abstract
We investigated the effect of presowing treatment of seeds with salicylic (SA) and jasmonic (JA) acids on the growth of wheat Triticum aestivum L. seedlings, generation of hydrogen peroxide (Н2О2) therein, and transcriptional activity of the genes encoding defense proteins—oxalate oxidase (OxO), peroxidase (PO), and proteinase inhibitor (PI)—upon their inoculation with stinking smut pathogen Tilletia caries (DC.) Tull. SA and JA were found to reduce adverse effect of T. caries on growth of seedlings and the extent of their infection by the pathogen. Improvement of plant resistance to T. caries depended on a stimulatory effect of SA and JA on the formation of Н2О2 in plant tissues and changes in activity of ОхО, PO, and catalase. SA was shown to elevate transcriptional activity of the genes of oxalate oxidase and peroxidase. We detected a considerable stimulatory effect of JA on transcriptional activity of the gene encoding proteinase inhibitor. Revealed differences in the activation of defense proteins pointed to differing mechanisms of SA and JA action on protective potential of wheat plants infected with T. caries.



Alleviation of Drought Stress in Turfgrass by the Combined Application of Nano-compost and Microbes from Compost
Abstract
Drought stress is a key environmental factor limiting the growth and productivity of plants. Turfgrasses are often affected by drought in north China due to water shortage. In the present study, the impact of nanosized compost either alone or in combination with drought tolerant isolates from compost on turfgrass response to drought was investigated. Municipal solid waste (MSW) compost was processed into nanosized particles and added in turfgrass soil. Microorganisms in the MSW compost were screened for drought stress tolerance using increasing concentrations of polyethylene glycol (PEG 6000). Festuca arundinacea Schreb. plants were inoculated with this mixture and exposed to drought stress by reducing the amount of water added at vegetative growth stage. The drought-tolerant isolates from compost were identified as Bacillus cereus, Lysinibacillus sp. and Rhodotorula glutinis. Our results revealed that nanocompost and microbial inoculation minimized the drought stress-imposed effects significantly increasing shoot biomass, root biomass, and chlorophyll content. Similarly, nanocompost-treated and inoculated seedlings showed higher levels of antioxidant enzymes and lower MDA content compared to nontreated control under drought stress. The combination of nano-sized compost and microbial inoculation were more efficient than nanocompost alone in terms of influencing growth and physiological status of the seedlings under drought stress. Our data suggest that nanocompost combined with drought-tolerant isolates may enhance drought tolerance in turfgrass by promoting plant growth and increasing the capacity to eliminate toxic reactive oxygen species (ROS).



Characteristics of Eliciting Effects of Furostanol Glycosides on Cultured Yam Cells
Abstract
To unravel mechanisms of elicitor action of furostanol glycosides (FGs), the formation of superoxide anion after the addition of FGs to a suspension culture of yam (Dioscorea deltoidea Wall. ex Griseb) cells was studied. The substantial increase in superoxide level, evaluated by nitroblue tetrazolium (NBT) reduction to formazan, was found at the exponential phase of cell growth. The involvement of NADPH oxidase in the superoxide generation was revealed by means of inhibitory analysis. Diphenyliodonium chloride (DPI), the inhibitor of NADPH oxidase, compromised the action of FGs. Meanwhile, the elimination of apoplastic peroxidase did not affect the accumulation of formazan, which suggests the involvement of NADPH oxidase but not peroxidase in the superoxide generation. In addition to NBT-test, the superoxide formation was judged by changes in activity of superoxide dismutase (SOD). Exogenous FGs activated the enzyme due to the increased production of superoxide anion. In this case, DPI decreased SOD activity that conforms to the NADPH oxidase involvement in the superoxide generation. The analysis of antioxidant activity of FGs by inhibition of radicals of 2,2-diphenyl-1-picrylhydrazyl showed that FGs are weak reductants in comparison with ascorbic acid. The results of the work allow for the suggestion that, supposing a weak reducing capacity of FGs, the special feature of their exogenous action on cultured yam cells is the increase in the level of superoxide anion radical mainly produced by NADPH oxidase.



Bacillus subtilis and Vermicompost Suppress Damping-off Disease in Psyllium through Nitric Oxide-Dependent Signaling System
Abstract
Fusarium oxysporum is one of pathogens causing the damping-off disease of Plantago psyllium in Iran. A greenhouse experiment was conducted to assess the effect of Bacillus subtilis and vermicompost singly and in combination on control of Fusarium–induced damping-off in psyllium. The results showed that vermicompost or B. subtilis, significantly increased the growth of psyllium seedlings and both were effective biocontrol agents against F. oxysporum. Among treatments at least damping-off incidence was recorded in combination of 50% vermicompost and B. subtilis. Results for the first time exhibited that vermicompost as well as B. subtilis induced systemic resistance through nitric oxide (NO) signaling and their combined application further than their individual treatments induced development of plant defense related enzymes including β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and the activities of antioxidant enzymes (ascorbate peroxidase, catalase, superoxide dismutase and peroxidase) and also more effectively reduced lipid peroxidation in psyllium leaves. These findings suggested potential of B. subtilis in promoting plant growth as well as inducing systemic resistance in the host plants, was enhanced by vermicompost application.



γ-Irradiation of Barley Seeds and Its Effect on the Phytohormonal Status of Seedlings
Abstract
We investigated the effect of γ-irradiation (4–50 Gy) of barley seeds (Hordeum vulgare L., cv. Nur) on the content of endogenous phytohormones–stimulators of plant growth and development: indol-3-acetic acid (IAA), indolyl-3-butyric acid (IBA), zeatin and abscisic acid (ABA). The ratio (IAA + IBA + zeatin)/ABA from the third to the seventh day of germination has been measured. It was shown that the changes in the content of phytohormones as a function of the radiation dose were nonlinear. In the dose range of 4–20 Gy, phytohormones balance was changed due to increased content of growth stimulators and decreased ABA content. Using a dose of 50 Gy led primarily to a decrease in the content of growth stimulators and an increase in ABA content, and the ratio (IAA + IBA + zeatin)/ABA shifted toward ABA content.



Role of Photorespiration and Cyclic Electron Transport in C4 Photosynthesis Evolution in the C3–C4 Intermediate Species Sedobassia sedoides
Abstract
Plants from two Sedobassia sedoides (Pall.) Aschers populations (Makan and Valitovo) (Chenopodiaceae) with C2 photosynthesis (precursor of C4 photosynthesis in phylogenesis) and photorespiratory CO2-concentrating mechanism were studied. Genetic polymorphism and isotope discrimination (δ13С) levels of the plants were determined under natural conditions, and their morpho-physiological parameters such as fresh and dry biomass of the above ground parts of plants, functioning of photosystem I (PSI) and photosystem II (PSII), intensity of net photosynthesis (A), transpiration (E), photorespiration and water use efficiency (WUE) of plants were calculated under control and salinine conditions (0 and 200 mM NaCl). Results of the population-genetic analysis showed that the Makan population is polymorphic (plastic) and the Valitovo population is monomorphic (narrowly specialized). There were no significant differences between the populations based on δ13С values or growth parameters, PSII, A, E and WUE under control conditions. Under saline conditions, dry biomass accumulation decreased in the Makan population by 15% and by more than 2- fold in the Valitovo population. Population differences were revealed in terms of photorespiration intensity and P700 oxidation kinetics under control and saline conditions. Under control conditions, Makan plants were characterized by a higher photorespiration intensity, which decreased by 2-fold under saline conditions to the photorespiration level of Valitovo plants. Cyclic electron transport activity was minimal in the control Makan plants, and it increased by almost 2-fold under saline conditions to the level of that in Valitovo plants under control and saline conditions. Under control conditions, photosynthesis in Makan plants can be specified as the proto-Kranz type (transitional type from C3 to C2) and that in Valitovo plants can be specified as the C2 type (C4 photosynthesis with photorespiratory CO2-concentrating mechanism), based on their photorespiration level and cyclic electron transport activity. Under saline conditions, Makan plants exhibited features of C2 photosynthesis. Intraspecific functional differences of photosynthesis were revealed in different populations of intermediate C3–C4 plant species S. sedoides which reflect the initial stages of formation of a photorespiratory CO2-concentrating mechanism during C4 photosynthesis evolution, accompanied by decrease in salt tolerance.


