红外光和绿色光生物调节对再生骨骼肌损伤灶结缔组织中MyoD阳性

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。激光照射通过增加细胞增殖和分化来促进横纹肌组织更快的再生。光生物调制的效果取决于许多因素,包括照射的对象和持续时间、辐射的波长和功率。MyoD(myogenic differentiation)是一种调节肌生成的转录因子。我们没有发现关于不同持续时间的红外光和绿光生物调节对增强MyoD阳性细胞(MyoD+)功能活性及其在损伤灶中数量增加的影响的文献数据。与此同时,寻找修复受损骨骼肌纤维的方法仍是当务之急。

研究目的 — 是分析红外线和绿光谱激光对骨骼肌损伤灶结缔组织中MyoD+细胞数量的影响。

方法。该研究在208只大鼠(Wistar系雄性)中进行,分为6个实验组:对照组(0组,n = 8);肌肉切割伤(I组,n = 40);肌肉切割伤口,随后将红外激光短期(60秒)暴露于伤口区域(II组,n = 40);长时间(180秒)暴露于红外激光的切割伤口(III组,n = 40);短期(60秒)绿激光暴露的切割伤口(IV组,n=40);长时间(180秒)暴露于绿色激光的切割伤口(V组,n = 40)。在肌肉损伤后立即以连续模式进行一次激光照射。在苏木精染色的组织学切片上,使用MyoD抗体进行免疫组织化学方法,计算每1mm2的MyoD+细胞数,观察1、3、7、14和30天受损横纹肌病灶区的切口面积。

结果。实验发现,光生物调制后,在不同的实验阶段,损伤灶区结缔组织中的细胞核数量都会增加。在这个过程中,经过短时间内绿光和红外光谱的光生物调节后的一天内,每平方毫米的MyoD+细胞数量明显增加。经过绿激光的短期照射后,在MyoD+细胞中显示出最强的刺激影响。

结论。使用绿色和红外光的光生物调节导致在骨骼肌损伤病灶的结缔组织中MyoD+细胞数量的早期增加。用绿色激光对大鼠进行短期光生物调节后,发现向肌生成方向分化的细胞数量增加最为明显。

作者简介

Rostislav V. Takhaviev

South Ural State University

Email: rkenpachi@bk.ru
ORCID iD: 0000-0002-8994-570X
SPIN 代码: 9619-9800
俄罗斯联邦, Chelyabinsk

Gennady V. Bryukhin

South Ural State University

编辑信件的主要联系方式.
Email: bgenvas@mail.ru
ORCID iD: 0000-0002-3898-766X
SPIN 代码: 7691-8383

Dr. Sci. (Medicine), Professor

俄罗斯联邦, Chelyabinsk

Elena S. Golovneva

South Ural State University

Email: micron30@mail.ru
ORCID iD: 0000-0002-6343-7563
SPIN 代码: 1728-1640

Dr. Sci. (Medicine), Associate Professor

俄罗斯联邦, Chelyabinsk

参考

  1. Lebedeva AI, Muslimov SA, Vagapova VSh, Shcherbakov DA. Morphological aspects of the regeneration of skeletal muscle tissue induced by allogeneic biomaterial. Practical medicine. 2019;17(1):98–102. (In Russ.) doi: 10.32000/2072-1757-2019-1-98-102 EDN: ZAQPKP
  2. Odintsova IA, Chepurnenko MN, Komarova AS. Myogenic satellite cells are a cambial reserve of muscle tissue. Genes & Cells. 2014;9(1):6–14. (In Russ.) doi: 10.23868/gc120237 EDN: SKAGZF
  3. Shurygin MG, Bolbat AV, Shurygina IA. Myogenic satellite cells as a source of muscle tissue regeneration. Fundamental research. 2015;1(8):1741–1746. (In Russ.) EDN: TXQNRL
  4. Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1a and HIF2a are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem. 2017;292(14):5981–5991. doi: 10.1074/jbc.M116.756312
  5. Cirillo F, Resmini G, Angelino E, et al. HIF-1a directly controls WNT7A expression during myogenesis. Front Cell Dev Biol. 2020;8:593508. doi: 10.3389/fcell.2020.593508
  6. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31. doi: 10.1016/j.stem.2007.12.012
  7. Chang NC, Rudnicki MA. Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol. 2014;107:161–181. doi: 10.1016/B978-0-12-416022-4.00006-8
  8. Fujita R, Mizuno S, Sadahiro T, et al. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience. 2023;26(5):106592. doi: 10.1016/j.isci.2023.106592
  9. Bisceglie L, Hopp AK, Gunasekera K, et al. MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. iScience. 2021;24(5):102432. doi: 10.1016/j.isci.2021.102432
  10. Fan SH, Li N, Huang KF, et al. MyoD over-expression rescues GST-bFGF repressed myogenesis. Int J Mol Sci. 2024;25(8):4308. doi: 10.3390/ijms25084308
  11. Zhang K, Sha J, Harter ML. Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol. 2010;188(1):39–48. doi: 10.1083/jcb.200904144
  12. Xie S, Skotheim JM. Cell-size control: Chromatin-based titration primes inhibitor dilution. Curr Biol. 2021;31(19):R1127–R1129. doi: 10.1016/j.cub.2021.08.031
  13. Gu Q, Wang L, Huang F, Schwarz W. Stimulation of TRPV1 by green laser light. Evid Based Complement Alternat Med. 2012; 2012:857123. doi: 10.1155/2012/857123
  14. Rhind N. Cell-size control. Curr Biol. 2021;31(21):R1414–R1420. doi: 10.1016/j.cub.2021.09.017
  15. Weintraub H, Davis R, Tapscott S, et al. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991;251(4995):761–766. doi: 10.1126/science.1846704
  16. Tapscott SJ, Weintraub H. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J Clin Invest. 1991;87(4):1133–1138. doi: 10.1172/JCI115109
  17. Timimi ZA. The impact of 980nm diode laser irradiation on the proliferation of mesenchymal stem cells derived from the umbilical cord’s. Tissue Cell. 2024;91:102568. doi: 10.1016/j.tice.2024.102568
  18. Gong C, Lu Y, Jia C, Xu N. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy. J Cosmet Dermatol. 2022;21(11):5696–5703. doi: 10.1111/jocd.15298
  19. da Silveira Campos RM, Dâmaso AR, Masquio DCL, et al. The effects of exercise training associated with low-level laser therapy on biomarkers of adipose tissue transdifferentiation in obese women. Lasers Med Sci. 2018;33(6):1245–1254. doi: 10.1007/s10103-018-2465-1
  20. Bölükbaşı Ateş G, Ak A, Garipcan B, Gülsoy M. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology. 2020;72(2):247–258. doi: 10.1007/s10616-020-00374-y
  21. Abrahamse H, Crous A. Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells. Lasers Med Sci. 2024;39(1):257. doi: 10.1007/s10103-024-04172-2
  22. Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett. 2018;592(5):679–691. doi: 10.1002/1873-3468.12972
  23. Bergstrom DA, Penn BH, Strand A, et al. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell. 2002;9(3):587–600. doi: 10.1016/s1097-2765(02)00481-1
  24. Choi J, Costa ML, Mermelstein CS, et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA. 1990;87(20):7988–7992. doi: 10.1073/pnas.87.20.7988
  25. Dall’Agnese A, Caputo L, Nicoletti C, et al. Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell. 2019;76(3):453–472.e8. doi: 10.1016/j.molcel.2019.07.036
  26. Rosenberg MI, Georges SA, Asawachaicharn A, et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR- 206. J Cell Biol. 2006;175(1):77–85. doi: 10.1083/jcb.200603039
  27. Conerly ML, Yao Z, Zhong JW, et al. Distinct activities of Myf5 and MyoD indicate separate roles in skeletal muscle lineage specification and differentiation. Dev Cell. 2016;36(4):375–385. doi: 10.1016/j.devcel.2016.01.021
  28. Zaret KS. Pioneer transcription factors initiating gene network changes. Annu Rev Genet. 2020;54:367–385. doi: 10.1146/annurev-genet-030220-015007
  29. Maves L, Waskiewicz AJ, Paul B, et al. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development. 2007;134(18):3371–3382. doi: 10.1242/dev.003905
  30. Casey BH, Kollipara RK, Pozo K, Johnson JE. Intrinsic DNA binding properties demonstrated for lineage-specifying basic helix-loop-helix transcription factors. Genome Res. 2018;28(4):484–496. doi: 10.1101/gr.224360.117
  31. Forcales SV, Albini S, Giordani L, et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 2012;31(2):301–316. doi: 10.1038/emboj.2011.391
  32. Harada A, Okada S, Konno D, et al. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J. 2012;31(13):2994–3007. doi: 10.1038/emboj.2012.136
  33. Dilworth FJ, Seaver KJ, Fishburn AL, et al. In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci U S A. 2004;101(32):11593–11598. doi: 10.1073/pnas.0404192101
  34. Misteli T. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell. 2020;183(1):28–45. doi: 10.1016/j.cell.2020.09.014
  35. Harada A, Mallappa C, Okada S, et al. Spatial re-organization of myogenic regulatory sequences temporally controls gene expression. Nucleic Acids Res. 2015;43(4):2008–2021. doi: 10.1093/nar/gkv046

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. MyoD-positive cells (marked with asterisks) in the injury site of rat skeletal muscle on day 14 of the experiment, showing an increased number of MyoD-positive cells: a, after incision injury modeling (group 1); b, after prolonged infrared photobiomodulation of the wound area; c, after prolonged green laser irradiation of the wound area. Hematoxylin staining and immunohistochemistry using MyoD-specific antibodies; magnification ×1000 (objective ×100, eyepiece ×10).

下载 (623KB)
3. Fig. 2. MyoD-positive cells (marked with asterisks) in the injury site of rat skeletal muscle on day 7 of the experiment, showing high MyoD expression in intrafascicular cells and reduced expression in connective tissue cells surrounding the fibers: a, c, after green photobiomodulation; b, after infrared photobiomodulation. Hematoxylin staining and immunohistochemistry using MyoD-specific antibodies; magnification ×1000 (objective ×100, eyepiece ×10).

下载 (657KB)

版权所有 © Eco-Vector, 2025

许可 URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».