红外光和绿色光生物调节对再生骨骼肌损伤灶结缔组织中MyoD阳性
- 作者: Takhaviev R.V.1, Bryukhin G.V.1, Golovneva E.S.1
-
隶属关系:
- South Ural State University
- 期: 卷 163, 编号 1 (2025)
- 页面: 29-38
- 栏目: Original Study Articles
- URL: https://journal-vniispk.ru/1026-3543/article/view/292732
- DOI: https://doi.org/10.17816/morph.642882
- EDN: https://elibrary.ru/TMUVWG
- ID: 292732
如何引用文章
详细
论证。激光照射通过增加细胞增殖和分化来促进横纹肌组织更快的再生。光生物调制的效果取决于许多因素,包括照射的对象和持续时间、辐射的波长和功率。MyoD(myogenic differentiation)是一种调节肌生成的转录因子。我们没有发现关于不同持续时间的红外光和绿光生物调节对增强MyoD阳性细胞(MyoD+)功能活性及其在损伤灶中数量增加的影响的文献数据。与此同时,寻找修复受损骨骼肌纤维的方法仍是当务之急。
研究目的 — 是分析红外线和绿光谱激光对骨骼肌损伤灶结缔组织中MyoD+细胞数量的影响。
方法。该研究在208只大鼠(Wistar系雄性)中进行,分为6个实验组:对照组(0组,n = 8);肌肉切割伤(I组,n = 40);肌肉切割伤口,随后将红外激光短期(60秒)暴露于伤口区域(II组,n = 40);长时间(180秒)暴露于红外激光的切割伤口(III组,n = 40);短期(60秒)绿激光暴露的切割伤口(IV组,n=40);长时间(180秒)暴露于绿色激光的切割伤口(V组,n = 40)。在肌肉损伤后立即以连续模式进行一次激光照射。在苏木精染色的组织学切片上,使用MyoD抗体进行免疫组织化学方法,计算每1mm2的MyoD+细胞数,观察1、3、7、14和30天受损横纹肌病灶区的切口面积。
结果。实验发现,光生物调制后,在不同的实验阶段,损伤灶区结缔组织中的细胞核数量都会增加。在这个过程中,经过短时间内绿光和红外光谱的光生物调节后的一天内,每平方毫米的MyoD+细胞数量明显增加。经过绿激光的短期照射后,在MyoD+细胞中显示出最强的刺激影响。
结论。使用绿色和红外光的光生物调节导致在骨骼肌损伤病灶的结缔组织中MyoD+细胞数量的早期增加。用绿色激光对大鼠进行短期光生物调节后,发现向肌生成方向分化的细胞数量增加最为明显。
作者简介
Rostislav V. Takhaviev
South Ural State University
Email: rkenpachi@bk.ru
ORCID iD: 0000-0002-8994-570X
SPIN 代码: 9619-9800
俄罗斯联邦, Chelyabinsk
Gennady V. Bryukhin
South Ural State University
编辑信件的主要联系方式.
Email: bgenvas@mail.ru
ORCID iD: 0000-0002-3898-766X
SPIN 代码: 7691-8383
Dr. Sci. (Medicine), Professor
俄罗斯联邦, ChelyabinskElena S. Golovneva
South Ural State University
Email: micron30@mail.ru
ORCID iD: 0000-0002-6343-7563
SPIN 代码: 1728-1640
Dr. Sci. (Medicine), Associate Professor
俄罗斯联邦, Chelyabinsk参考
- Lebedeva AI, Muslimov SA, Vagapova VSh, Shcherbakov DA. Morphological aspects of the regeneration of skeletal muscle tissue induced by allogeneic biomaterial. Practical medicine. 2019;17(1):98–102. (In Russ.) doi: 10.32000/2072-1757-2019-1-98-102 EDN: ZAQPKP
- Odintsova IA, Chepurnenko MN, Komarova AS. Myogenic satellite cells are a cambial reserve of muscle tissue. Genes & Cells. 2014;9(1):6–14. (In Russ.) doi: 10.23868/gc120237 EDN: SKAGZF
- Shurygin MG, Bolbat AV, Shurygina IA. Myogenic satellite cells as a source of muscle tissue regeneration. Fundamental research. 2015;1(8):1741–1746. (In Russ.) EDN: TXQNRL
- Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1a and HIF2a are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem. 2017;292(14):5981–5991. doi: 10.1074/jbc.M116.756312
- Cirillo F, Resmini G, Angelino E, et al. HIF-1a directly controls WNT7A expression during myogenesis. Front Cell Dev Biol. 2020;8:593508. doi: 10.3389/fcell.2020.593508
- Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31. doi: 10.1016/j.stem.2007.12.012
- Chang NC, Rudnicki MA. Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol. 2014;107:161–181. doi: 10.1016/B978-0-12-416022-4.00006-8
- Fujita R, Mizuno S, Sadahiro T, et al. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience. 2023;26(5):106592. doi: 10.1016/j.isci.2023.106592
- Bisceglie L, Hopp AK, Gunasekera K, et al. MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. iScience. 2021;24(5):102432. doi: 10.1016/j.isci.2021.102432
- Fan SH, Li N, Huang KF, et al. MyoD over-expression rescues GST-bFGF repressed myogenesis. Int J Mol Sci. 2024;25(8):4308. doi: 10.3390/ijms25084308
- Zhang K, Sha J, Harter ML. Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol. 2010;188(1):39–48. doi: 10.1083/jcb.200904144
- Xie S, Skotheim JM. Cell-size control: Chromatin-based titration primes inhibitor dilution. Curr Biol. 2021;31(19):R1127–R1129. doi: 10.1016/j.cub.2021.08.031
- Gu Q, Wang L, Huang F, Schwarz W. Stimulation of TRPV1 by green laser light. Evid Based Complement Alternat Med. 2012; 2012:857123. doi: 10.1155/2012/857123
- Rhind N. Cell-size control. Curr Biol. 2021;31(21):R1414–R1420. doi: 10.1016/j.cub.2021.09.017
- Weintraub H, Davis R, Tapscott S, et al. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991;251(4995):761–766. doi: 10.1126/science.1846704
- Tapscott SJ, Weintraub H. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J Clin Invest. 1991;87(4):1133–1138. doi: 10.1172/JCI115109
- Timimi ZA. The impact of 980nm diode laser irradiation on the proliferation of mesenchymal stem cells derived from the umbilical cord’s. Tissue Cell. 2024;91:102568. doi: 10.1016/j.tice.2024.102568
- Gong C, Lu Y, Jia C, Xu N. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy. J Cosmet Dermatol. 2022;21(11):5696–5703. doi: 10.1111/jocd.15298
- da Silveira Campos RM, Dâmaso AR, Masquio DCL, et al. The effects of exercise training associated with low-level laser therapy on biomarkers of adipose tissue transdifferentiation in obese women. Lasers Med Sci. 2018;33(6):1245–1254. doi: 10.1007/s10103-018-2465-1
- Bölükbaşı Ateş G, Ak A, Garipcan B, Gülsoy M. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology. 2020;72(2):247–258. doi: 10.1007/s10616-020-00374-y
- Abrahamse H, Crous A. Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells. Lasers Med Sci. 2024;39(1):257. doi: 10.1007/s10103-024-04172-2
- Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett. 2018;592(5):679–691. doi: 10.1002/1873-3468.12972
- Bergstrom DA, Penn BH, Strand A, et al. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell. 2002;9(3):587–600. doi: 10.1016/s1097-2765(02)00481-1
- Choi J, Costa ML, Mermelstein CS, et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA. 1990;87(20):7988–7992. doi: 10.1073/pnas.87.20.7988
- Dall’Agnese A, Caputo L, Nicoletti C, et al. Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell. 2019;76(3):453–472.e8. doi: 10.1016/j.molcel.2019.07.036
- Rosenberg MI, Georges SA, Asawachaicharn A, et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR- 206. J Cell Biol. 2006;175(1):77–85. doi: 10.1083/jcb.200603039
- Conerly ML, Yao Z, Zhong JW, et al. Distinct activities of Myf5 and MyoD indicate separate roles in skeletal muscle lineage specification and differentiation. Dev Cell. 2016;36(4):375–385. doi: 10.1016/j.devcel.2016.01.021
- Zaret KS. Pioneer transcription factors initiating gene network changes. Annu Rev Genet. 2020;54:367–385. doi: 10.1146/annurev-genet-030220-015007
- Maves L, Waskiewicz AJ, Paul B, et al. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development. 2007;134(18):3371–3382. doi: 10.1242/dev.003905
- Casey BH, Kollipara RK, Pozo K, Johnson JE. Intrinsic DNA binding properties demonstrated for lineage-specifying basic helix-loop-helix transcription factors. Genome Res. 2018;28(4):484–496. doi: 10.1101/gr.224360.117
- Forcales SV, Albini S, Giordani L, et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 2012;31(2):301–316. doi: 10.1038/emboj.2011.391
- Harada A, Okada S, Konno D, et al. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J. 2012;31(13):2994–3007. doi: 10.1038/emboj.2012.136
- Dilworth FJ, Seaver KJ, Fishburn AL, et al. In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci U S A. 2004;101(32):11593–11598. doi: 10.1073/pnas.0404192101
- Misteli T. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell. 2020;183(1):28–45. doi: 10.1016/j.cell.2020.09.014
- Harada A, Mallappa C, Okada S, et al. Spatial re-organization of myogenic regulatory sequences temporally controls gene expression. Nucleic Acids Res. 2015;43(4):2008–2021. doi: 10.1093/nar/gkv046
补充文件
