Change in the Charge State of MOS Structures with a Radiation-Induced Charge under High-Field Injection of Electrons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of high-field electron injection modes on the charge state and defectiveness of metal–oxide–semiconductor (MOS) structures after irradiation is studied. It is shown that to erase the radiation-induced positive charge accumulated in the SiO2 film of MOS structures, it is necessary to apply high-field Fowler–Nordheim tunnel injection of electrons in electric field that do not cause the hole generation. It has been established that erasure of the radiation-induced positive charge in the SiO2 film of MOS structure and the generation of new interface traps are mainly determined by the magnitude of the charge injected into the dielectric. It has been found that, upon annihilation of the holes trapped in SiO2 as a result of the interaction with the injected electrons, a significant increase in the number of the interface traps is observed, which significantly exceeds the number of interface traps arising upon annealing of a radiation-induced positive charge at room temperature. A model is proposed that describes the annihilation of a radiation-induced positive charge upon interaction with injected electrons.

About the authors

D. V. Andreev

Bauman Moscow State Technical University, The Kaluga Branch

Email: vladimir_andreev@bmstu.ru
Russia, 248000, Kaluga

G. G. Bondarenko

National Research University Higher School of Economics

Email: vladimir_andreev@bmstu.ru
Russia, 101000, Moscow

V. V. Andreev

Bauman Moscow State Technical University, The Kaluga Branch

Author for correspondence.
Email: vladimir_andreev@bmstu.ru
Russia, 248000, Kaluga

References

  1. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. https://doi.org/10.1109/TNS.2003.812927
  2. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. https://doi.org/10.1109/TNS.2008.2001040
  3. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 1465. https://doi.org/10.1109/TNS.2017.2786140
  4. Hughes H.L., Benedetto J.M. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 500. https://doi.org/10.1109/TNS.2003.812928
  5. Esqueda I.S., Barnaby H.J., King M.P. // IEEE Trans. Nucl. Sci. 2015. V. 62. P. 1501. https://doi.org/10.1109/TNS.2015.2414426
  6. Murata K., Mitomo S., Matsuda T., Yokoseki T., Makino T., Onoda S., Takeyama A., Ohshima T., Okubo S., Tanaka Y., Kandori M., Yoshie T., Hijikata Y. // Phys. Stat. Sol. A. 2017. V. 214. P. 1600446. https://doi.org/10.1002/pssa.201600446
  7. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2020. V. 67. P. 1216. https://doi.org/10.1109/TNS.2020.2971861
  8. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. https://doi.org/10.1016/1359-0197(86)90134-7
  9. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. https://doi.org/10.1016/j.radphyschem.2016.08.027
  10. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. https://doi.org/10.1016/j.nimb.2011.08.015
  11. Lipovetzky J., Holmes–Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. https://doi.org/10.1109/TNS.2012.2222667
  12. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Measurements. 2015. V. 75. P. 53. https://doi.org/10.1016/j.radmeas.2015.03.004
  13. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. https://doi.org/10.1109/TNS.2019.2942955
  14. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. 7. P. 343. https://doi.org/10.1038/nmat2159
  15. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. // Sensors. 2020. V. 20. P. 2382. https://doi.org/10.3390/s20082382
  16. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. https://doi.org/10.1117/12.2521985
  17. Andreev V.V., Bondarenko G.G., Andreev D.V., Stolyarov A.A. // J. Contemp. Phys. (Armenian Acad. Sci.). 2020. V. 55. P. 144. https://doi.org/10.3103/S106833722002005X
  18. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. P. 260. https://doi.org/10.1134/S1027451020020196
  19. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. https://doi.org/10.1109/TNS.2007.895122
  20. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. https://doi.org/10.1109/TNS.2017.2744679
  21. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A., Andreev D.V. // Phys. Stat. Sol. C. 2015. V. 12. P. 299. https://doi.org/10.1002/pssc.201400119
  22. Andreev D.V., Maslovsky V.M., Andreev V.V., Stolyarov A.A. // Phys. Stat. Sol. A. 2022. V. 219. P. 2100400. https://doi.org/10.1002/pssa.202100400
  23. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. https://doi.org/10.1063/1.332323
  24. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. https://doi.org/10.1103/PhysRevB.49.10278
  25. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  26. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. https://doi.org/10.1002/adfm.201900657
  27. Wu E.Y. // IEEE Trans. Electron Devices. 2019. V. 66. P. 4523. https://doi.org/10.1109/TED.2019.2933612
  28. Zebrev G.I., Orlov V.V., Gorbunov M.S., Drosdetsky M.G. // Microelectron. Reliab. 2018. V. 84. P. 181. https://doi.org/10.1016/j.microrel.2018.03.014
  29. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // Acta Phys. Pol. A. 2019. V. 136. P. 263. https://doi.org/10.12693/APhysPolA.136.263
  30. Cerbu F., Madia O., Andreev D.V., Fadida S., Eizenberg M., Breuil L., Lisoni J.G., Kittl J.A., Strand J., Shluger A.L., Afanas’ev V.V., Houssa M., Stesmans A. // Appl. Phys. Lett. 2016. V. 108. P. 222901. https://doi.org/10.1063/1.495271

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (50KB)
3.

Download (95KB)
4.

Download (111KB)

Copyright (c) 2023 Д.В. Андреев, Г.Г. Бондаренко, В.В. Андреев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».