Magnetic Flux Leakage Signal Inversion Based on Improved Efficient Population Utilization Strategy for Particle Swarm Optimization


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, an improved efficient population utilization strategy for particle swarm optimization (IEPUS-PSO) for high dimension problem is proposed to estimate defect profile from magnetic flux leakage (MFL) signals. In the IEPUS-PSO, a mutation probability is proposed to distinguish local version and global version in particle change model and a self-adapted mutation operator, which is used to update the particles’ positions randomly, is introduced into EPUS-PSO. The IEPUS-PSO- based inversing technique is used to estimate the defect profiles. The estimated defect profiles of simulation signals demonstrate that the inversing technique based on the IEPUS-PSO outperforms the one based on EPUS-PSO. The results estimated from real MFL signals by the IEPUS-PSO-based inversing technique indicate that the algorithm is capable of decreasing the computation time. The results show that the IEPUS-PSO-based inversing technique could improve the reconstruction precision by two orders of magnitude for the MFL simulation signals, and for the real MFL signals, the computation time is reduced by about 30% nearly under the same reconstruction precision.

Авторлар туралы

Wenhua Han

College of Automation Engineering

Хат алмасуға жауапты Автор.
Email: hanwenhua@shiep.edu.cn
ҚХР, Shanghai, 200090

Zhengyang Wu

College of Automation Engineering

Email: hanwenhua@shiep.edu.cn
ҚХР, Shanghai, 200090

Mengchu Zhou

Department of Electrical and Computer Engineering

Email: hanwenhua@shiep.edu.cn
АҚШ, Newark, NJ, 07102

Edwin Hou

Department of Electrical and Computer Engineering

Email: hanwenhua@shiep.edu.cn
АҚШ, Newark, NJ, 07102

Xiaoyan Su

College of Automation Engineering

Email: hanwenhua@shiep.edu.cn
ҚХР, Shanghai, 200090

Ping Wang

College of Automation Engineering

Email: hanwenhua@shiep.edu.cn
ҚХР, Nanjing, 210016

Guiyun Tian

School of Electrical and Electronic Engineering

Email: hanwenhua@shiep.edu.cn
Ұлыбритания, Newcastle upon Tyne, NE1 7RU

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017