Sharp Estimates for Mean Square Approximations of Classes of Differentiable Periodic Functions by Shift Spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ℕ and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.

Sobre autores

O. Vinogradov

St. Petersburg State University

Autor responsável pela correspondência
Email: olvin@math.spbu.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

A. Ulitskaya

St. Petersburg State University

Email: olvin@math.spbu.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018