Sharp Estimates for Mean Square Approximations of Classes of Differentiable Periodic Functions by Shift Spaces
- Авторы: Vinogradov O.L.1, Ulitskaya A.Y.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 51, № 1 (2018)
- Страницы: 15-22
- Раздел: Mathematics
- URL: https://journal-vniispk.ru/1063-4541/article/view/185919
- DOI: https://doi.org/10.3103/S1063454118010120
- ID: 185919
Цитировать
Аннотация
Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ℕ and B ∈ L2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.
Ключевые слова
Об авторах
O. Vinogradov
St. Petersburg State University
Автор, ответственный за переписку.
Email: olvin@math.spbu.ru
Россия, Universitetskaya nab. 7–9, St. Petersburg, 199034
A. Ulitskaya
St. Petersburg State University
Email: olvin@math.spbu.ru
Россия, Universitetskaya nab. 7–9, St. Petersburg, 199034
Дополнительные файлы
