Sharp Estimates for Mean Square Approximations of Classes of Differentiable Periodic Functions by Shift Spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ℕ and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.

作者简介

O. Vinogradov

St. Petersburg State University

编辑信件的主要联系方式.
Email: olvin@math.spbu.ru
俄罗斯联邦, Universitetskaya nab. 7–9, St. Petersburg, 199034

A. Ulitskaya

St. Petersburg State University

Email: olvin@math.spbu.ru
俄罗斯联邦, Universitetskaya nab. 7–9, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018