Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The specific heat, thermal expansion, permittivity, and electrocaloric effect in bulk of BaTiO3 (BT) samples in the form of nano- (nBT-500 nm) and micro- (mBT-1200 nm) ceramics fabricated using spark plasma sintering and solid-state plasma techniques have been investigated. The size effect has been reflected, to a great extent, in the suppression of the specific heat and thermal expansion anomalies and in the changes in the temperatures and entropies of phase transitions and permittivity, and a decrease in the maximum intensive electrocaloric effect: \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 29 mK (E = 2.0 kV/cm) for nBT and \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 70 mK (E = 2.5 kV/cm) for mBT. The conductivity growth at temperatures above 360 K leads to the significant irreversible heating of the samples due to the Joule heat release in the applied electric field, which dominates over the electrocaloric effect.

About the authors

A. V. Kartashev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Krasnoyarsk State Pedagogical University

Author for correspondence.
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660049

V. S. Bondarev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

I. N. Flerov

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

M. V. Gorev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

E. I. Pogorel’tsev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

A. V. Shabanov

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036

M. S. Molokeev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics

Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

S. Guillemet-Fritsch

CIRIMAT Laboratory, University of Toulouse

Email: akartashev@yandex.ru
France, Toulouse, 31062

I. P. Raevskii

Southern Federal University, Research Institute of Physics

Email: akartashev@yandex.ru
Russian Federation, Rostov-on-Don, 344090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.