Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics
- Authors: Kartashev A.V.1,2, Bondarev V.S.1,3, Flerov I.N.1,3, Gorev M.V.1,3, Pogorel’tsev E.I.1,3, Shabanov A.V.1, Molokeev M.S.1,3, Guillemet-Fritsch S.4, Raevskii I.P.5
-
Affiliations:
- Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
- Krasnoyarsk State Pedagogical University
- Siberian Federal University, Institute of Engineering Physics and Radio Electronics
- CIRIMAT Laboratory, University of Toulouse
- Southern Federal University, Research Institute of Physics
- Issue: Vol 61, No 6 (2019)
- Pages: 1052-1061
- Section: Ferroelectricity
- URL: https://journal-vniispk.ru/1063-7834/article/view/205770
- DOI: https://doi.org/10.1134/S1063783419060088
- ID: 205770
Cite item
Abstract
The specific heat, thermal expansion, permittivity, and electrocaloric effect in bulk of BaTiO3 (BT) samples in the form of nano- (nBT-500 nm) and micro- (mBT-1200 nm) ceramics fabricated using spark plasma sintering and solid-state plasma techniques have been investigated. The size effect has been reflected, to a great extent, in the suppression of the specific heat and thermal expansion anomalies and in the changes in the temperatures and entropies of phase transitions and permittivity, and a decrease in the maximum intensive electrocaloric effect: \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 29 mK (E = 2.0 kV/cm) for nBT and \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 70 mK (E = 2.5 kV/cm) for mBT. The conductivity growth at temperatures above 360 K leads to the significant irreversible heating of the samples due to the Joule heat release in the applied electric field, which dominates over the electrocaloric effect.
About the authors
A. V. Kartashev
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Krasnoyarsk State Pedagogical University
Author for correspondence.
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660049
V. S. Bondarev
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041
I. N. Flerov
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041
M. V. Gorev
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041
E. I. Pogorel’tsev
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041
A. V. Shabanov
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036
M. S. Molokeev
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University, Institute of Engineering Physics and Radio Electronics
Email: akartashev@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041
S. Guillemet-Fritsch
CIRIMAT Laboratory, University of Toulouse
Email: akartashev@yandex.ru
France, Toulouse, 31062
I. P. Raevskii
Southern Federal University, Research Institute of Physics
Email: akartashev@yandex.ru
Russian Federation, Rostov-on-Don, 344090
Supplementary files
