Heterometallic trinuclear {CdII—MII—CdII} pivalates (M = Mg, Ca, or Sr): ways of assembly and structural features
- 作者: Gogoleva N.V.1, Shmelev M.A.1, Evstifeev I.S.1, Nikolaevskii S.A.1, Aleksandrov G.G.1, Kiskin M.A.1, Dobrokhotova Z.V.1, Sidorov A.A.1, Eremenko I.L.1
-
隶属关系:
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- 期: 卷 65, 编号 1 (2016)
- 页面: 181-190
- 栏目: Full Articles
- URL: https://journal-vniispk.ru/1066-5285/article/view/236881
- DOI: https://doi.org/10.1007/s11172-016-1281-7
- ID: 236881
如何引用文章
详细
Conditions for chemical assembly of new heterometallic trinuclear pivalates [Cd2M(piv)6L2] (M = Mg, Ca, or Sr; piv is pivalate) were found. Reactions with the nonchelating ligand 2,4-lutidine (lut) gave the crystals of heterometallic complexes [Cd2M(piv)6(lut)2] (M = Mg (1), Ca (2), and Sr (3)). With the chelating ligand 1,10-phenanthroline (phen), only the homometallic dimer [Cd2(piv)4(phen)2] (4) was obtained under these conditions. Yet heterometallic trinuclear complexes with 1,10-phenanthroline ([Cd2Mg(piv)6(H2O)(phen)2] (5), [CaCd2(piv)6(phen)2] (6), and [Cd2Sr(piv)6(phen)2]∙2MeCN (7)) were synthesized by reactions of phen with complexes 1—3. For all the complexes obtained, the molecular and crystal structures as well as the details of their molecular architecture were determined. The thermal behavior of aqua complex 5 was studied by TG and DSC. The complex eliminated the water molecule between 130 and 180 °C with a high endothermic effect (Q = 101 kJ mol–1) due to (1) intramolecular hydrogen bonds that stabilize its molecular architecture and (2) subsequent structural rearrangements.
作者简介
N. Gogoleva
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
M. Shmelev
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
I. Evstifeev
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
S. Nikolaevskii
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
G. Aleksandrov
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
M. Kiskin
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
Zh. Dobrokhotova
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
A. Sidorov
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
I. Eremenko
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gogolevanv@inbox.ru
俄罗斯联邦, 31 Leninsky prosp., Moscow, 119991
补充文件
