On likelihood ratio ordering of parallel systems with exponential components
- Авторлар: Wang J.1, Zhao P.2
-
Мекемелер:
- School of Math. Sci.
- School of Math. and Statist.
- Шығарылым: Том 25, № 2 (2016)
- Беттер: 145-150
- Бөлім: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225763
- DOI: https://doi.org/10.3103/S1066530716020058
- ID: 225763
Дәйексөз келтіру
Аннотация
Let T(λ1,...,λn) be the lifetime of a parallel system consisting of exponential components with hazard rates λ1,...,λn, respectively. For systems with only two components, Dykstra et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T(λ1, λ2) is larger than T(γ1, γ2) in likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce a new partial order, the so-called d-larger order, and show that if (λ1,...,λn) is d-larger than (γ1,...,γn), then T(λ1,...,λn) is larger than T(γ1,...,γn) in likelihood ratio order.
Негізгі сөздер
Авторлар туралы
J. Wang
School of Math. Sci.
Хат алмасуға жауапты Автор.
Email: jwang@kean.edu
АҚШ, Kean
P. Zhao
School of Math. and Statist.
Email: jwang@kean.edu
ҚХР, Jiangsu
Қосымша файлдар
