On likelihood ratio ordering of parallel systems with exponential components


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let T1,...,λn) be the lifetime of a parallel system consisting of exponential components with hazard rates λ1,...,λn, respectively. For systems with only two components, Dykstra et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T1, λ2) is larger than T1, γ2) in likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce a new partial order, the so-called d-larger order, and show that if (λ1,...,λn) is d-larger than (γ1,...,γn), then T1,...,λn) is larger than T1,...,γn) in likelihood ratio order.

Sobre autores

J. Wang

School of Math. Sci.

Autor responsável pela correspondência
Email: jwang@kean.edu
Estados Unidos da América, Kean

P. Zhao

School of Math. and Statist.

Email: jwang@kean.edu
República Popular da China, Jiangsu

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016