On likelihood ratio ordering of parallel systems with exponential components


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let T1,...,λn) be the lifetime of a parallel system consisting of exponential components with hazard rates λ1,...,λn, respectively. For systems with only two components, Dykstra et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T1, λ2) is larger than T1, γ2) in likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce a new partial order, the so-called d-larger order, and show that if (λ1,...,λn) is d-larger than (γ1,...,γn), then T1,...,λn) is larger than T1,...,γn) in likelihood ratio order.

作者简介

J. Wang

School of Math. Sci.

编辑信件的主要联系方式.
Email: jwang@kean.edu
美国, Kean

P. Zhao

School of Math. and Statist.

Email: jwang@kean.edu
中国, Jiangsu

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016