Structural failure at low temperatures and stability diagnostics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of impurities on the cold brittleness of materials is studied. A neural network is trained to model fatigue and brittle failure of samples. The neural network generates numerical sequences that evolve analogously to the fractal characteristics of acoustic emission studied in fatigue tests with various loads.

About the authors

Yu. G. Kabaldin

Alekseev Nizhegorodsk State Technical University

Author for correspondence.
Email: uru.40@mail.ru
Russian Federation, Nizhny Novgorod, 603905

I. L. Laptev

Alekseev Nizhegorodsk State Technical University

Email: uru.40@mail.ru
Russian Federation, Nizhny Novgorod, 603905

D. A. Shatagina

Alekseev Nizhegorodsk State Technical University

Email: uru.40@mail.ru
Russian Federation, Nizhny Novgorod, 603905

M. S. Anosova

Alekseev Nizhegorodsk State Technical University

Email: uru.40@mail.ru
Russian Federation, Nizhny Novgorod, 603905

V. O. Zotova

Alekseev Nizhegorodsk State Technical University

Email: uru.40@mail.ru
Russian Federation, Nizhny Novgorod, 603905

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Allerton Press, Inc.