On the recursive sequence \( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} \)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solution of the difference equation

\( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, \)

where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . , is studied.

About the authors

Dağıstan Simsek

Kyrgyz–Turkish Manas University; Selcuk University

Author for correspondence.
Email: dagistan.simsek@manas.edu.kg
Kyrgyzstan, Bishkek; Konya

Fahreddin Abdullayev

Kyrgyz–Turkish Manas University; Mersin University

Email: dagistan.simsek@manas.edu.kg
Kyrgyzstan, Bishkek; Mersin

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York