On the recursive sequence \( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} \)
- Authors: Simsek D.1,2, Abdullayev F.1,3
-
Affiliations:
- Kyrgyz–Turkish Manas University
- Selcuk University
- Mersin University
- Issue: Vol 222, No 6 (2017)
- Pages: 762-771
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/239269
- DOI: https://doi.org/10.1007/s10958-017-3330-7
- ID: 239269
Cite item
Abstract
The solution of the difference equation
\( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, \)![]()
where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . , is studied.
Keywords
About the authors
Dağıstan Simsek
Kyrgyz–Turkish Manas University; Selcuk University
Author for correspondence.
Email: dagistan.simsek@manas.edu.kg
Kyrgyzstan, Bishkek; Konya
Fahreddin Abdullayev
Kyrgyz–Turkish Manas University; Mersin University
Email: dagistan.simsek@manas.edu.kg
Kyrgyzstan, Bishkek; Mersin
Supplementary files
