Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate
- Autores: Zaikin A.A.1
-
Afiliações:
- Kazan Federal University
- Edição: Volume 229, Nº 6 (2018)
- Páginas: 678-697
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240512
- DOI: https://doi.org/10.1007/s10958-018-3707-2
- ID: 240512
Citar
Resumo
The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.
Sobre autores
A. Zaikin
Kazan Federal University
Autor responsável pela correspondência
Email: kaskrin@gmail.com
Rússia, Kazan
Arquivos suplementares
