Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate
- 作者: Zaikin A.A.1
-
隶属关系:
- Kazan Federal University
- 期: 卷 229, 编号 6 (2018)
- 页面: 678-697
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240512
- DOI: https://doi.org/10.1007/s10958-018-3707-2
- ID: 240512
如何引用文章
详细
The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.
补充文件
