Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.

作者简介

A. Zaikin

Kazan Federal University

编辑信件的主要联系方式.
Email: kaskrin@gmail.com
俄罗斯联邦, Kazan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018