Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields
- 作者: Aïdékon E.1, Hu Y.2, Shi Z.1
-
隶属关系:
- LPMA, Université Pierre et Marie Curie
- LAGA, Université Paris XIII
- 期: 卷 238, 编号 4 (2019)
- 页面: 348-365
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242532
- DOI: https://doi.org/10.1007/s10958-019-04243-8
- ID: 242532
如何引用文章
详细
We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
作者简介
E. Aïdékon
LPMA, Université Pierre et Marie Curie
编辑信件的主要联系方式.
Email: elie.aidekon@upmc.fr
法国, Paris
Yueyun Hu
LAGA, Université Paris XIII
Email: elie.aidekon@upmc.fr
法国, Villetaneuse
Zhan Shi
LPMA, Université Pierre et Marie Curie
Email: elie.aidekon@upmc.fr
法国, Paris
补充文件
