Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.

About the authors

E. Aïdékon

LPMA, Université Pierre et Marie Curie

Author for correspondence.
Email: elie.aidekon@upmc.fr
France, Paris

Yueyun Hu

LAGA, Université Paris XIII

Email: elie.aidekon@upmc.fr
France, Villetaneuse

Zhan Shi

LPMA, Université Pierre et Marie Curie

Email: elie.aidekon@upmc.fr
France, Paris

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature