Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields
- Authors: Aïdékon E.1, Hu Y.2, Shi Z.1
-
Affiliations:
- LPMA, Université Pierre et Marie Curie
- LAGA, Université Paris XIII
- Issue: Vol 238, No 4 (2019)
- Pages: 348-365
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242532
- DOI: https://doi.org/10.1007/s10958-019-04243-8
- ID: 242532
Cite item
Abstract
We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
About the authors
E. Aïdékon
LPMA, Université Pierre et Marie Curie
Author for correspondence.
Email: elie.aidekon@upmc.fr
France, Paris
Yueyun Hu
LAGA, Université Paris XIII
Email: elie.aidekon@upmc.fr
France, Villetaneuse
Zhan Shi
LPMA, Université Pierre et Marie Curie
Email: elie.aidekon@upmc.fr
France, Paris
Supplementary files
