Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate
- Authors: Zaikin A.A.1
-
Affiliations:
- Kazan Federal University
- Issue: Vol 229, No 6 (2018)
- Pages: 678-697
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240512
- DOI: https://doi.org/10.1007/s10958-018-3707-2
- ID: 240512
Cite item
Abstract
The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.
About the authors
A. A. Zaikin
Kazan Federal University
Author for correspondence.
Email: kaskrin@gmail.com
Russian Federation, Kazan
Supplementary files
