Study of Weather and Climate Predictability at Seasonal Time Scales with Climate Model of INM RAS

Capa

Citar

Texto integral

Resumo

Prediction system of seasonal weather and climate anomalies is developed on the basis of INM RAS climate model. The model includes block of atmospheric dynamics with surface and soil model, block of ocean and sea ice dynamics, and aerosol block. Initial states were generated as anomalies of atmospheric, oceanic and ice states derived from reanalysis added to model climatology. Simulation of weather anomalies in December–February and June–August, 1980–2014 was considered. It is shown that model is capable to reproduce anomalies of winter and summer seasons, including anomalies associated with North Atlantic Oscillation (NAO), Pacific North American Oscillation (PNA). The quality of seasonal forecasts with developed prediction system is close to the quality of other present day seasonal prediction systems. Operative simulations of weather anomalies in June–August, 2022, are considered. It is possible to use successfully the prediction system in operative regime.

Sobre autores

Evgeny Volodin

Marchuk Institute of Numerical Mathematics, RAS

Autor responsável pela correspondência
Email: volodinev@gmail.com
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Vasilisa Vorobyeva

Marchuk Institute of Numerical Mathematics, RAS

Email: VVorobyeva@yandex.ru
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Maria Tarasevich

Marchuk Institute of Numerical Mathematics, RAS

Email: mashatarasevich@gmail.com
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Bibliografia

  1. B. Hoskins Quart. J. Roy. Meteor. Soc., 2013, 139, 573. doi: 10.1002/qj.1991.
  2. M.A. Tolstykh, E.M. Volodin, S.V. Kostrykin, R.Y. Fadeev, V.V. Shashkin, N.N. Bogoslovskii, R. M. Vilfand, D.B. Kiktev, T.V. Krasjuk, V.G. Mizyak, A.V. Shlyaeva, J.-F. Geleyn, I.N. Ezau, A.Y. Yurova Russ. Meteorol. Hydrol., 2015, 40(6), 374. doi: 10.3103/S1068373915060035.
  3. E.M. Volodin, E.V. Mortikov, S.V. Kostrykin, V.Ya. Galin, V.N. Lykossov, A.S. Gritsun, N.A. Diansky, A.V. Gusev, N.G. Yakovlev Clim. Dyn., 2017, 49, 3715. doi: 10.1007/s00382-017-3539-7.
  4. J.A. Carton, G.A. Chepurin, L. Chen J. Climate, 2018, 31(17), 6967. doi: 10.1175/JCLI-D-18-0149.1.
  5. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol et al. Quart. J. Roy. Met. Soc., 2011, 137, 553. doi: 10.1002/qj.828.
  6. R.F. Adler, G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin J. Hydrometeor., 2003, 4, 1147. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
  7. N. Calvo, R.R. Garcia, W.J. Randel, D.R. Marsh J. Atmos. Sci., 2010, 67(7), 2331. doi: 10.1175/2010JAS3433.1.
  8. V.V. Vorobyeva, E.M. Volodin Russ. Meteorol. Hydrol., 2018, 43(11), 737. doi: 10.3103/S1068373918110043.
  9. WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble. (https://wmolc.org).
  10. R. Hagedorn, F.J. Doblas-Reyes, T.N. Palmer Tellus A, 2005, 57, 219. doi: 10.1111/j.1600-0870.2005.00103.x.
  11. A. Weigel, M.A. Liniger, C. Appenzeller Quart. J. Royal. Meteorol. Soc., 2008, 134, 241. doi: 10.1002/qj.210.
  12. L. Batte, M. Deque Tellus A, 2011, 63, 283. doi: 10.1111/j.1600-0870.2010.00493.x.
  13. V.N. Stepanov, Yu.D. Resnyanskii, B.S. Strukov, A.A. Zelenko Russ. Meteorol. Hydrol., 2019, 1, 50. doi: 10.3103/S1068373919010047.
  14. Manual on the Global Data-Processing and Forecasting System. Attachment II.8: Standardized Verification System (SVS) for Long- Range Forecasts (LRF). Executive Summary. (https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climatescience/climate-observations-projections-and-impacts/svslrf.pdf).
  15. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo et al. Quart. J. Roy. Meteorol. Soc., 2020, 146, 1999. doi: 10.1002/qj.3803.
  16. Twenty-third Session of the North Eurasian Climate Forum (SEACOF-23): Final Consensus Decision (RF, Moscow, November 29-30, 2022) (in Russian). (http://seakc-old.meteoinfo.ru/images/seakc/neacof23/neacof23_consensus.pdf).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Volodin E.M., Vorobyeva V.V., Tarasevich M.A., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).