Preparation and Study of Fe and Ni Containing Composite Materials Based on Zeolite H-ZSM-5 as Membranes for Hydrogen Purification
- Authors: Brovko R.V.1, Monzcharenko M.A.1, Mikhailov S.P.1, Salnikova K.E.1, Doluda V.Y.1
-
Affiliations:
- Tver State Technical University
- Issue: Vol 118, No 3-4 (2023): ТЕМАТИЧЕСКИЙ БЛОК: ФУНДАМЕНТАЛЬНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ ЕСТЕСТВЕННЫХ НАУК
- Pages: 45-59
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/301853
- DOI: https://doi.org/10.22204/2410-4639-2023-119-120-03-04-45-59
- ID: 301853
Cite item
Full Text
Abstract
The separation of complex hydrogen-containing gas mixtures in order to obtain technical and high-purity hydrogen is an important scientific and technical task that determines the possibility of further systematic development of the "green" economy. The article presents the results of a study of Fe and Ni containing membranes based on zeolite H-ZSM-5 and aluminum oxide, used to purify hydrogen from carbon monoxide, carbon dioxide and nitrogen. Mono and bimetallic Fe and Ni containing membranes were obtained by hot pressing aluminum oxide and H-ZSM-5 zeolite with subsequent secondary growth of the zeolite on the membrane surface, adsorption and reduction of active metals.
Synthesized mono and bimetallic samples Al2O3-ZSM-5-Fe, Al2O3-ZSM-5-Ni and Al2O3-ZSM-5-Fe-Ni with different content of active metals were investigated by various physicochemical methods including low-temperature nitrogen adsorption, chemical adsorption of ammonia, hydrogen, X-ray fluorescence analysis. The bimetallic sample Al2O3-ZSM-5-c-Fe-3%-Ni-2% has higher selectivity in the separation of hydrogen from complex mixtures compared to the results given in the literature. The high selectivity of the above membrane may be due to the possibility of a higher rate of hydrogen adsorption and its migration over the surface of bimetallic particles.
About the authors
Roman V. Brovko
Tver State Technical University
Author for correspondence.
Email: RomanVictorovich69@mail.ru
Russian Federation, 22 A. Nikitin Emb., Tver, 170026, Russia
Margarita A. Monzcharenko
Tver State Technical University
Email: monzharenko.rita@yandex.ru
Russian Federation, 22 A. Nikitin Emb., Tver, 170026, Russia
Stepan P. Mikhailov
Tver State Technical University
Email: stefan.oblivion@mail.ru
Russian Federation, 22 A. Nikitin Emb., Tver, 170026, Russia
Kseniya E. Salnikova
Tver State Technical University
Email: ksenia666.93@gmail.com
Russian Federation, 22 A. Nikitin Emb., Tver, 170026, Russia
Valentin Yu. Doluda
Tver State Technical University
Email: doludav@yandex.ru
Russian Federation, 22 A. Nikitin Emb., Tver, 170026, Russia
References
- M. Ravi, J.W. Makepeace Chem. Commun., 2022, 58, 6076. doi: 10.1039/D2CC01345B.
- W.A. Aboutaleb, A. El Naggar, M.A. Sayed, A.I. Zahran, S. Ahmed, M. Mekewi, A. El-Zahhar Mater. Chem. Phys., 2022, 276, 125165. doi: 10.1016/J.MATCHEMPHYS.2021.125165.
- B. Lee, H. Lee, D. Lim, B. Brigljević, W. Cho, H. Cho, C. Kim, H. Lim Appl Energy, 2020, 279, 115827. doi: 10.1016/J.APENERGY.2020.115827.
- J.E. Nachod, J.H. Shapleigh Pat. USA, US59699445A, 1948.
- K.C. Wong, P.S. Goh, A.F. Ismail Int. J. Hydrogen Energy, 2021, 46,19737. doi: 10.1016/J.IJHYDENE.2020.09.079.
- Q. Zhou, S. Luo, M. Zhang, N. Liao Int. J. Hydrogen Energy, 2022, 47, 13054. doi: 10.1016/J.IJHYDENE.2022.02.044.
- C. Xu, W. Wei, Y. He Mater. Lett., 2022, 132680. doi: 10.1016/J.MATLET.2022.132680.
- G.T. Kokotailo, S.L. Lawton, D.H. Olson, W.M. Meier Nature, 1978, 272, 437. doi: 10.1038/272437a0.
- N. Mehio, S. Dai, D. Jiang J. Phys. Chem. A., 2014, 118, 1150. doi: 10.1021/JP412588F.
- J. Guo, X. Li, X. Cheng, H. Liu, S. Li, G. Chen Int. J. Hydrogen Energy, 2018, 43, 19121. doi: 10.1016/J.IJHYDENE.2018.08.143.
- Y. Yao, D. Goodman J. Mol. Catal. A Chem., 2014, 383, 239. doi: 10.1016/J.MOLCATA.2013.12.013.
- H. Kim, C. Song J. Catal., 2021, 403, 203. doi: 10.1016/J.JCAT.2021.03.001.
- J. Figueroa-Campos, J. Toledo-Antonio, L. Vázquez-Fuentes, C. Angeles-Chávez, E. López-Salinas, M. Mosqueira-Mondragon, M. Cortés-Jacome Microporous Mesoporous Mater., 2022, 336, 111868. doi: 10.1016/J.MICROMESO.2022.111868.
- L. Öhman, B. Ganemi, E. Björnbom, K. Rahkamaa, R. Keiski, J. Paul Mater. Chem. Phys., 2002, 73, 263. doi: 10.1016/S0254-0584(01)00391-1.
- A. Kostyniuk, D. Key, M. Mdleleni J. Energy Inst., 2020, 93, 552. doi: 10.1016/J.JOEI.2019.06.009.
- L. Alfilfil, J. Ran, C. Chen, X. Dong, J. Wang, Y. Han Microporous Mesoporous Mater., 2022, 330, 111566. doi: 10.1016/J.MICROMESO.2021.111566.
- L. Luo, S. Wang, C. Fan, L. Yang, Z. Wu, Z. Qin, H. Zhu, W. Fan, J. Wang Appl. Catal. A. Gen, 2020, 602, 117678. doi: 10.1016/j.apcata.2020.117678.
- A. Masalska Appl. Catal. A Gen., 2005, 294, 260. doi: 10.1016/J.APCATA.2005.07.039.
- X. Meng, J. Song, N. Yang, B. Meng, X. Tan, Z. Ma, K. Li J. Memb. Sci., 2012, 401–402, 300. doi: 10.1016/J.MEMSCI.2012.02.017.
- H. Xie, L. Zhuang, Y. Wei, J. Xue, H. Wang Ceramics International, 2017, 43, 14608. doi: 10.1016/J.CERAMINT.2017.07.098.
- B. Shon, T. Hong, M. Jung Solid State Ionics, 2012, 225, 695. doi: 10.1016/J.SSI.2012.03.039.
- L. Marchetti, F. Martin, F. Datcharry, J. Chêne Corros. Sci., 2018, 144, 1–12. doi: 10.1016/J.CORSCI.2018.05.027.
- Z. Zhu, W. Sun, Z. Wang, J. Cao, Y. Dong, W. Liu J. Power Sources, 2015, 281, 417. doi: 10.1016/J.JPOWSOUR.2015.02.005.
- A. Basile, F. Gallucci, A. Iulianelli, G. Tereschenko, M. Ermilova, N. Orekhova J. Memb. Sci., 2008, 310, 44. doi: 10.1016/J.MEMSCI.2007.10.028.
- K. Zhu, X. Li, Y. Zhang, X. Zhao, Z.Liu, J. Guo J. Hydrogen Energy, 2022, 47, 6734. doi: 10.1016/J.IJHYDENE.2021.12.021.
Supplementary files
