Том 84, № 2 (2020)
- Год: 2020
- Статей: 8
- URL: https://journal-vniispk.ru/1607-0046/issue/view/7543
Статьи
Новый подход в вопросе существования ограниченных решений для функционально-дифференциальных уравнений точечного типа
Аннотация
Работа является развитием подхода, ранее использованного автором при выводе условий нового типа для существования периодических решений как для обыкновенных дифференциальных уравнений, так и для функционально-дифференциальных уравнений точечного типа. Такие условия основаны на учете асимптотических свойств решений дифференциальных уравнений, которые могут наблюдаться на сдвигах решений и формулируются в терминах средних по периоду на какой-либо выделенной сфере фазового пространства. Для тех же классов функционально-дифференциальных уравнений развитие отмеченного подхода позволяет получить условия существования ограниченных решений.Библиография: 12 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):3-42
3-42
Жадные приближения произвольным множеством
Аннотация
Определяются различные алгоритмы жадных приближений элементами произвольного множества $M$ в банаховом пространстве. Исследуется сходимость этих алгоритмов в гильбертовом пространстве при различных геометрических условиях на $M$. Как следствие получаются достаточные условия плотности аддитивной полугруппы, порожденной множеством $M$.Библиография: 12 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):43-59
43-59
О сингулярно возмущенных системах ОДУ с кратным корнем вырожденного уравнения
Аннотация
Рассматривается краевая задача для системы двух ОДУ второго порядка с разными степенями малого параметра при второй производной в первом и втором уравнениях. Особенность системы состоит в том, что одно из двух уравнений вырожденной системы имеет двукратный корень. Оказалось, что в этом случае асимптотика погранслойного решения краевой задачи качественно отличается от известной асимптотики в случае простых корней уравнений вырожденной системы, в частности масштабы погранслойных переменных и сам алгоритм построения погранслойных рядов зависят от вида краевых условий для искомых функций. В работе для одного из возможных вариантов краевых условий построена и обоснована асимптотика погранслойного решения, отличающаяся от асимптотик при других краевых условиях. Библиография: 13 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):60-89
60-89
Условия модулярности решетки конгруэнций полигона над прямоугольной связкой
Аннотация
В работе описаны полигоны над прямоугольными связками, имеющие модулярную, или дистрибутивную, или линейно упорядоченную решетку конгруэнций. Оказалось, что такие полигоны имеют самое большее 11 элементов, а их решетка конгруэнций – 300 элементов. Кроме того, установлены некоторые факты о строении полигонов с модулярной решеткой конгруэнций над произвольной полугруппой и о строении решетки конгруэнций полигона над прямоугольной связкой. Исследования основываются на полученном в 2000 г. А. Ю. Авдеевым и И. Б. Кожуховым описании полигонов над вполне (0-)простой полугруппой и характеризации в 2013 г. Д. О. Птаховым и А. А. Степановой несвязных полигонов с модулярной или дистрибутивной решеткой конгруэнций.Библиография: 13 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):90-125
90-125
Гипотеза Воота для слабо $o$-минимальных теорий конечного ранга выпуклости
Аннотация
Доказано, что слабо $o$-минимальные теории конечного ранга выпуклости, имеющие менее чем $2^{\omega}$ счетных моделей, являются бинарными. Основным результатом статьи является подтверждение гипотезы Воота для слабо $o$-минимальных теорий конечного ранга выпуклости.Библиография: 13 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):126-151
126-151
$p$-адические мономиальные уравнения и их возмущения
Аннотация
В статье описывается множество всех решений мономиального уравнения $x^k=a$ над $\mathbb Q_p$. Кроме того, в качестве приложения полученного результата изучаются некоторые возмущения рассматриваемого уравнения над $p$-адическим полем.Библиография: 23 наименования.
Известия Российской академии наук. Серия математическая. 2020;84(2):152-165
152-165
Некоторые тригонометрические полиномы с экстремально малой равномерной нормой и их приложения
Аннотация
Построены ортогональные тригонометрические полиномы с новым условием на спектр, у которых $L^{1}$-нормы ограничены снизу, а равномерная норма частичных сумм имеет экстремально малый порядок. Получены новые результаты о связи между равномерной нормой и $\mathrm{QC}$-нормой на подпространствах в пространстве тригонометрических полиномов.Библиография: 13 наименований.
Известия Российской академии наук. Серия математическая. 2020;84(2):166-196
166-196
Об $S$-единицах для нормирований второй степени в гиперэллиптических полях
Аннотация
В данной статье предложен новый эффективный подход к проблеме поиска и построения нетривиальных $S$-единиц гиперэллиптического поля $L$ для множества $S=S_h$, состоящего из двух сопряженных нормирований второй степени. Полученные результаты основаны на глубокой связи между проблемой кручения в якобианах гиперэллиптических кривых и квазипериодичностью непрерывных $h$-дробей – обобщенных функциональных непрерывных дробей специального вида, построенных по нормированию второй степени. Найдены алгоритмы для поиска фундаментальных $S_h$-единиц, сравнимые по эффективности с известными быстрыми алгоритмами для двух линейных нормирований.Библиография: 24 наименования.
Известия Российской академии наук. Серия математическая. 2020;84(2):197-242
197-242
