Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte

Cover Page

Cite item

Full Text

Abstract

The results of the study of the electrochemical reduction of multilayer graphene oxide in the potentiostatic mode are presented and the possibility of using alkaline electrolyte (KOH) with the concentration below 0.1 M is shown. The identification of the electrochemically reduced graphene oxide was carried out using the XRD, FTIR and Raman-spectroscopy methods. Applying the method of Raman spectroscopy the increase in the intensity of the G and 2D bands, indicating the formation of few-layer forms of reduced graphene oxide was found. The surface morphology of the electrochemically reduced graphene oxide was studied by means of the SEM method.

About the authors

Sergei Vital'evich Brudnik

The Saratov State Technical University of Gagarin Yu. A.

77, Politekhnicheskaya St., Saratov, 410054

Andrei Vasil'evich Yakovlev

The Saratov State Technical University of Gagarin Yu. A.

77, Politekhnicheskaya St., Saratov, 410054

Elena Vladimirovna Yakovleva

The Saratov State Technical University of Gagarin Yu. A.

77, Politekhnicheskaya St., Saratov, 410054

Andrei Alekseevich Alferov

The Saratov State Technical University of Gagarin Yu. A.

ORCID iD: 0000-0003-2610-9365
77, Politekhnicheskaya St., Saratov, 410054

Vitalii Nikolaevich Tseluikin

Engelssky Institute of Technology of the Saratov State Technical University

17, Svoboda Square, Engels, 413100

Anton Stanislavovich Mostovoi

Engelssky Institute of Technology of the Saratov State Technical University

17, Svoboda Square, Engels, 413100

References

  1. Khan A. H., Ghosh S., Pradhan B., Dalui A., Shrestha L. K., Acharya S., Ariga K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics and energy-related applications // Bull. Chem. Soc. 2017. Vol. 90. P. 627. https://doi.org/10.1246/bcsj.20170043
  2. Iro Z. S., Subramani C., Dash S. S. A Brief Review on Electrode Materials for Supercapacitor // Int. J. Electrochem. Sci. 2016. Vol. 11. P. 10628–10643. https://doi.org/10.20964/2016.12.50
  3. Dai L., Chang D. W., Baek J.-B., Lu W. Carbon Nanomaterials for Advanced Energy Conversion and Storage // Nano-Micro Letters. 2012. Vol. 8, iss. 8. P. 1130–1166. https://doi.org/10.1002/smll.201101594
  4. Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites // CS Appl. Electron. Mater. 2019. Vol. 1, № 2. P. 198–209. https://doi.org/10.1021/acsaelm.8b00042
  5. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review // RSC Adv. 2020. Vol. 10. P. 15328–15345 https://doi.org/10.1039/D0RA01068E
  6. Sun L. Structure and synthesis of graphene oxide // Chin. J. Chem. Eng. 2019. Vol. 27, iss. 10. P. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
  7. Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria // J. Nanomed. Nanotechnol. 2015. Vol. 6, № 1. P. 1–4. https://doi.org/10.4172/2157-7439.1000253
  8. Brisebois P. P., Siaj M. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation // J. Mater. Chem. C. 2020. Vol. 8. P. 1517–1547. https://doi.org/10.1039/C9TC03251G
  9. Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method // Sci. Rep. 2016. Vol. 6. Article number 36143. https://doi.org/10.1038/srep36143
  10. Alkhouzaam A., Qiblawey H., Khraisheh M., Atieh M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method // Ceram. 2020. Vol. 46, iss. 15. P. 23997–24007. https://doi.org/10.1016/j.ceramint.2020.06.177
  11. De Silva K. K. H., Huang H.-H., Joshi R. K., Yoshimura M. Chemical reduction of graphene oxide using green reductants // Carbon. 2017. Vol. 119. P. 190–199. https://doi.org/10.1016/j.carbon.2017.04.025
  12. Chua C. K., Pumera M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach // Chem. Commun. 2016. Vol. 52. P. 72–75. https://doi.org/10.1039/C5CC08170J
  13. Guex L. G., Sacchi B., Peuvot K. F., Andersson R. L., Pourrahimi A. M., Ström V., Farris S., Olsson R. T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry // Nanoscale. 2017. Vol. 9. P. 9562–9571. https://doi.org/10.1039/C7NR02943H
  14. Liu Y., Feng J. An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents // Compos. Sci. Technol. 2017. Vol. 140. P. 16–22. https://doi.org/10.1016/j.compscitech.2016.12.026
  15. Lavin-Lopez M. P., Paton-Carrero A., Sanchez-Silva L., Valverde J. L., Romero A. Influence of the reduction strategy in the synthesis of reduced graphene oxide // Adv. Powder. Technol. 2017. Vol. 28, iss. 12. P. 3195–3203. https://doi.org/10.1016/j.apt.2017.09.032
  16. Abdolhosseinzadeh S., Asgharzadeh H., Seop K. H. Fast and fully-scalable synthesis of reduced graphene oxide // Sci. Rep. 2015. Vol. 5. Article number 10160. https://doi.org/10.1038/srep10160
  17. Sengupta I., Chakraborty S., Talukdar M., Pal S. K., Chakraborty S. Thermal reduction of graphene oxide: How temperature influences purity // J. Mater. Res. 2018. Vol. 33, iss. 23. P. 4113–4122. https://doi.org/10.1557/jmr.2018.338
  18. Liu G., Xiong Z., Yang L., Shi H., Fang D., Wang M., Shao P., Luo X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review // Sci. Total. Environ. 2021. Vol. 778. Article number 146301. https://doi.org/10.1016/j.scitotenv.2021.146301. Epub 2021
  19. Harima Y., Setodoi S., Imae I., Komaguchi K., Ooyama Y., Ohshita J., Mizota H., Yano J. Electrochemical reduction of graphene oxide in organic solvents // Electrochimica Acta. 2011. Vol. 56, iss. 15. P. 5363–5368. https://doi.org/10.1016/j.electacta.2011.03.117
  20. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today // J. Mater. Chem. C. 2020. Vol. 8. P. 1198–1224. https://doi.org/10.1039/C9TC04916A
  21. Яковлев А. В., Яковлева Е. В., Целуйкин В. Н., Краснов В. В., Мостовой А. С., Рахметулина Л. А., Фролов И. Н. Электрохимический синтез многослойного оксида графена анодным окислением дисперсного графита // Электрохимия. 2019. Т. 55, № 12. С. 1463–1470. https://doi.org/10.1134/S0424857019120193
  22. Marrani A. G., Motta A., Schrebler R., Zanoni R., Dalchiele E. A. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide // Electrochimica Acta. 2019. Vol. 304. P. 231–238. https://doi.org/10.1016/j.electacta.2019.02.108
  23. Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy // Materials. 2018. Vol. 11, iss. 7. P. 1–15. https://doi.org/10.3390/ma11071050

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».