Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte
- Authors: Brudnik S.V.1, Yakovlev A.V.1, Yakovleva E.V.1, Alferov A.A.1, Tseluikin V.N.2, Mostovoi A.S.2
-
Affiliations:
- The Saratov State Technical University of Gagarin Yu. A.
- Engelssky Institute of Technology of the Saratov State Technical University
- Issue: Vol 23, No 1 (2023)
- Pages: 33-40
- Section: Articles
- URL: https://journal-vniispk.ru/1608-4039/article/view/252007
- DOI: https://doi.org/10.18500/1608-4039-2023-23-1-33-40
- EDN: https://elibrary.ru/YBLAIY
- ID: 252007
Cite item
Full Text
Abstract
About the authors
Sergei Vital'evich Brudnik
The Saratov State Technical University of Gagarin Yu. A.77, Politekhnicheskaya St., Saratov, 410054
Andrei Vasil'evich Yakovlev
The Saratov State Technical University of Gagarin Yu. A.77, Politekhnicheskaya St., Saratov, 410054
Elena Vladimirovna Yakovleva
The Saratov State Technical University of Gagarin Yu. A.77, Politekhnicheskaya St., Saratov, 410054
Andrei Alekseevich Alferov
The Saratov State Technical University of Gagarin Yu. A.
ORCID iD: 0000-0003-2610-9365
77, Politekhnicheskaya St., Saratov, 410054
Vitalii Nikolaevich Tseluikin
Engelssky Institute of Technology of the Saratov State Technical University17, Svoboda Square, Engels, 413100
Anton Stanislavovich Mostovoi
Engelssky Institute of Technology of the Saratov State Technical University17, Svoboda Square, Engels, 413100
References
- Khan A. H., Ghosh S., Pradhan B., Dalui A., Shrestha L. K., Acharya S., Ariga K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics and energy-related applications // Bull. Chem. Soc. 2017. Vol. 90. P. 627. https://doi.org/10.1246/bcsj.20170043
- Iro Z. S., Subramani C., Dash S. S. A Brief Review on Electrode Materials for Supercapacitor // Int. J. Electrochem. Sci. 2016. Vol. 11. P. 10628–10643. https://doi.org/10.20964/2016.12.50
- Dai L., Chang D. W., Baek J.-B., Lu W. Carbon Nanomaterials for Advanced Energy Conversion and Storage // Nano-Micro Letters. 2012. Vol. 8, iss. 8. P. 1130–1166. https://doi.org/10.1002/smll.201101594
- Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites // CS Appl. Electron. Mater. 2019. Vol. 1, № 2. P. 198–209. https://doi.org/10.1021/acsaelm.8b00042
- Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review // RSC Adv. 2020. Vol. 10. P. 15328–15345 https://doi.org/10.1039/D0RA01068E
- Sun L. Structure and synthesis of graphene oxide // Chin. J. Chem. Eng. 2019. Vol. 27, iss. 10. P. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
- Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria // J. Nanomed. Nanotechnol. 2015. Vol. 6, № 1. P. 1–4. https://doi.org/10.4172/2157-7439.1000253
- Brisebois P. P., Siaj M. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation // J. Mater. Chem. C. 2020. Vol. 8. P. 1517–1547. https://doi.org/10.1039/C9TC03251G
- Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method // Sci. Rep. 2016. Vol. 6. Article number 36143. https://doi.org/10.1038/srep36143
- Alkhouzaam A., Qiblawey H., Khraisheh M., Atieh M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method // Ceram. 2020. Vol. 46, iss. 15. P. 23997–24007. https://doi.org/10.1016/j.ceramint.2020.06.177
- De Silva K. K. H., Huang H.-H., Joshi R. K., Yoshimura M. Chemical reduction of graphene oxide using green reductants // Carbon. 2017. Vol. 119. P. 190–199. https://doi.org/10.1016/j.carbon.2017.04.025
- Chua C. K., Pumera M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach // Chem. Commun. 2016. Vol. 52. P. 72–75. https://doi.org/10.1039/C5CC08170J
- Guex L. G., Sacchi B., Peuvot K. F., Andersson R. L., Pourrahimi A. M., Ström V., Farris S., Olsson R. T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry // Nanoscale. 2017. Vol. 9. P. 9562–9571. https://doi.org/10.1039/C7NR02943H
- Liu Y., Feng J. An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents // Compos. Sci. Technol. 2017. Vol. 140. P. 16–22. https://doi.org/10.1016/j.compscitech.2016.12.026
- Lavin-Lopez M. P., Paton-Carrero A., Sanchez-Silva L., Valverde J. L., Romero A. Influence of the reduction strategy in the synthesis of reduced graphene oxide // Adv. Powder. Technol. 2017. Vol. 28, iss. 12. P. 3195–3203. https://doi.org/10.1016/j.apt.2017.09.032
- Abdolhosseinzadeh S., Asgharzadeh H., Seop K. H. Fast and fully-scalable synthesis of reduced graphene oxide // Sci. Rep. 2015. Vol. 5. Article number 10160. https://doi.org/10.1038/srep10160
- Sengupta I., Chakraborty S., Talukdar M., Pal S. K., Chakraborty S. Thermal reduction of graphene oxide: How temperature influences purity // J. Mater. Res. 2018. Vol. 33, iss. 23. P. 4113–4122. https://doi.org/10.1557/jmr.2018.338
- Liu G., Xiong Z., Yang L., Shi H., Fang D., Wang M., Shao P., Luo X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review // Sci. Total. Environ. 2021. Vol. 778. Article number 146301. https://doi.org/10.1016/j.scitotenv.2021.146301. Epub 2021
- Harima Y., Setodoi S., Imae I., Komaguchi K., Ooyama Y., Ohshita J., Mizota H., Yano J. Electrochemical reduction of graphene oxide in organic solvents // Electrochimica Acta. 2011. Vol. 56, iss. 15. P. 5363–5368. https://doi.org/10.1016/j.electacta.2011.03.117
- Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today // J. Mater. Chem. C. 2020. Vol. 8. P. 1198–1224. https://doi.org/10.1039/C9TC04916A
- Яковлев А. В., Яковлева Е. В., Целуйкин В. Н., Краснов В. В., Мостовой А. С., Рахметулина Л. А., Фролов И. Н. Электрохимический синтез многослойного оксида графена анодным окислением дисперсного графита // Электрохимия. 2019. Т. 55, № 12. С. 1463–1470. https://doi.org/10.1134/S0424857019120193
- Marrani A. G., Motta A., Schrebler R., Zanoni R., Dalchiele E. A. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide // Electrochimica Acta. 2019. Vol. 304. P. 231–238. https://doi.org/10.1016/j.electacta.2019.02.108
- Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy // Materials. 2018. Vol. 11, iss. 7. P. 1–15. https://doi.org/10.3390/ma11071050
Supplementary files
