C/SiC-based anodes for lithium-ion current source
- 作者: Leonova N.M.1, Leonova A.M.1, Bashirov O.A.1, Lebedev A.S.2, Trofimov A.A.1, Suzdal'tsev A.V.1,3
-
隶属关系:
- Ural Federal University
- Institute of Mineralogy – a division of the the South Urals Federal Research Center of Mineralogy and Geo-ecology of the Urals Branch of the Russian Academy of Sciences
- 期: 卷 23, 编号 1 (2023)
- 页面: 41-50
- 栏目: Articles
- URL: https://journal-vniispk.ru/1608-4039/article/view/252008
- DOI: https://doi.org/10.18500/1608-4039-2023-23-1-41-50
- EDN: https://elibrary.ru/ZFLYPF
- ID: 252008
如何引用文章
全文:
详细
作者简介
Nataliya Leonova
Ural Federal University
ORCID iD: 0000-0003-1016-8977
19 Mira street, 620002 Ekaterinburg, Russia
Anastasiya Leonova
Ural Federal University
ORCID iD: 0000-0001-5900-7045
19 Mira street, 620002 Ekaterinburg, Russia
Oleg Bashirov
Ural Federal University
ORCID iD: 0000-0001-5509-8816
19 Mira street, 620002 Ekaterinburg, Russia
Aleksei Lebedev
Institute of Mineralogy – a division of the the South Urals Federal Research Center of Mineralogy and Geo-ecology of the Urals Branch of the Russian Academy of Sciences
ORCID iD: 0000-0002-6536-3684
Miass, Chelyabinsk district 456317, Russia
Aleksei Trofimov
Ural Federal University
ORCID iD: 0000-0003-1920-5869
19 Mira street, 620002 Ekaterinburg, Russia
Andrei Suzdal'tsev
Ural Federal University;
ORCID iD: 0000-0003-3004-7611
Scopus 作者 ID: 55218703800
Researcher ID: G-8015-2012
19 Mira street, 620002 Ekaterinburg, Russia
参考
- Ли С. А., Рыжикова Е. В., Скундин А. М. Проблемы оптимизации соотношения активных масс в электродах литийионных аккумуляторов // Электрохимическая энергетика. 2020. Т. 20, № 2. С. 68–72. https://doi.org/10.18500/1608-4039-2020-20-2-68-72
- Журавлев В. Д., Щеколдин С. И., Андрюшин С. Е., Шерстобитова Е. А., Нефедова К. В., Бушкова О. В. Электрохимические характеристики и фазовый состав литиймарганцевой шпинели с избытком лития Li1 + xMn2O4 // Электрохимическая энергетика. 2020. Т. 20, № 3. С. 157–170. https://doi.org/10.18500/1608-4039-2020-20-3-157-170
- Корнев П. В., Кулова Т. Л., Кузьмина А. А., Скундин А. М., Кошель Е. С., Климова В. М. Титанат лития, допированный неодимом, как анодный материал для литий-ионных аккумуляторов // Электрохимическая энергетика. 2022. Т. 22, № 3. С. 129–138. https://doi.org/10.18500/1608-4039-2022-22-3-129-138
- Bini M., Ambrosetti M., Spada D. ZnFe2O4, a green and high-capacity anode material for lithium-ion batteries: A review // Applied Science. 2021. Vol. 11. Article number 11713. https://doi.org/10.3390/app112411713
- Чемезов О. В., Исаков А. В., Аписаров А. П., Брежестовский М. С., Бушкова О. В., Баталов Н. Н., Зайков Ю. П., Шашкин А. П. Электролитическое получение нановолокон кремния из расплава KCl–KF–K2SiF6–SiO2 для композиционных анодов литий-ионных аккумуляторов // Электрохимическая энергетика. 2013. Т. 13, № 4. С. 201–204.
- Korchun A. V., Evshchik E. Yu., Baskakov S. A., Bushkova O. V., Dobrovolsky Y. A. Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries // Chimica Techno Acta. 2020. Vol. 7, № 4. P. 259–268. https://doi.org/10.15826/chimtech.2020.7.4.21
- Suzdaltsev A. Silicon electrodeposition for microelectronics and distributed energy: A mini-review // Electrochem. 2022. Vol. 3. P. 760–768. https://doi.org/10.3390/electrochem3040050
- Кулова Т. Л., Скундин А. М. Применение германия в литий-ионных и натрий-ионных аккумуляторах (Обзор) // Электрохимия. 2021. Т. 57, № 12. С. 709–742. https://doi.org/10.31857/S0424857021110050
- Chockla A. M., Klavetter K. C., Mullins C. B., Korgel B. A. Solution-grown germanium nanowire anodes for lithium-ion batteries // ACS Applied Materials & Interfaces. 2012. Vol. 4. P. 4658–4664. https://doi.org/10.1021/am3010253
- Fan Z., Wang Y., Zheng S., Xu K., Wu J., Chen S., Liang J., Shi A., Wang Zh. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery // Energy Storage Materials. 2021. Vol. 39. P. 1–10. https://doi.org/10.1016/j.ensm.2021.04.005
- Опра Д. П., Гнеденков С. В., Синебрюхов С. Л., Соколов А. А., Подгорбунский А. Б., Курявый В. Г., Майоров В. Ю., Машталяр Д. В., Устинов А. Ю. Допированный ванадием диоксид титана со структурой бронз как анодный материал для литий-ионных аккумуляторов с улучшенными циклическими и мощностными характеристиками // Электрохимическая энергетика. 2020. Т. 20, № 1. С. 3–19. https://doi.org/10.18500/1608-4039-2020-20-1-3-19
- Яковлева Е. В., Яковлев А. В., Краснов В. В., Целуйкин В. Н., Мостовой А. С., Курамина Н. Ю., Брудник С. В. Электрохимическое наноструктурирование графита для применения в химических источниках тока // Электрохимическая энергетика. 2020. Т. 20, № 1. С. 45–54. https://doi.org/10.18500/1608-4039-2020-20-1-45-54
- Huang X. D., Zhang F., Gan X. F., Huang Q. A., Yang J. Z., Lai T., Tang W. M. Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode // RSC Advance. 2018. Vol. 8. P. 5189–5169. https://doi.org/10.1039/C7RA12463E
- Sun X., Shao Ch., Zhang F., Li Y., Wu Q.-H., Yang Y. SiC nanofibers as long-life lithium-ion battery anode materials // Frontiers in Chemistry. 2018. Vol. 6. Article number 166. https://doi.org/10.3389/fchem.2018.00166
- Лебедев А. С., Суздальцев А. В., Фарленков А. С., Поротникова Н. М., Акашев Л. А., Вовкотруб Э. Г., Анфилогов В. Н. Карботермический синтез, свойства и структура SiC // Неорганические материалы. 2020. Т. 56, № 1. С. 22–29. https://doi.org/10.31857/S0002337X20010091
- Анфилогов В. Н., Лебедев А. С., Рыжков В. М., Блинов И. А. Карботермический синтез наноразмерного карбида кремния в автономной защитной атмосфере // Неорганические материалы. 2016. Т. 52, № 7. С. 712–717. https://doi.org/10.1134/S0020168516070025
- Гевел Т. А., Жук С. И., Устинова Ю. А., Суздальцев А. В., Зайков Ю. П. Электровыделение кремния из расплава KCl–K2SiF6 // Расплавы. 2021. № 2. С. 187–198. https://doi.org/10.31857/S0235010621020031
- Trofimov A. A., Leonova A. M., Leonova N. M., Gevel T. A. Electrodeposition of silicon from molten KCl–K2SiF6 for lithium-ion batteries // Journal of the Electrochemical Society. 2022. Vol. 169. Article number 020537. https://doi.org/10.1149/1945-7111/ac4d6b
- Choi J.-H., Choi S., Cho J. S., Kim H.-K., Jeong S. M. Efficient synthesis of high areal capacity Si@graphite@SiC composite anode material via one-step electro-deoxidation // Journal of Alloys and Compounds. 2022. Vol. 896. Article number 163010. https://doi.org/10.1016/j.jallcom.2021.163010
- Abdurakhimova R. K., Laptev M. V., Leonova N. M., Leonova A. M., Schmygalev A. S., Suzdaltsev A. V. Electroreduction of silicon from the NaI–KI–K2SiF6 melt for lithium-ion power sources // Chimica Techno Acta. 2022. Vol. 9, № 4. Article number 20229424. https://doi.org/10.15826/chimtech.2022.9.4.24
- Gevel T., Zhuk S., Leonova N., Leonova A., Trofimov A., Suzdaltsev A., Zaikov Y. Electrochemical synthesis of nano-sized silicon from KCl–K2SiF6 melts for powerful lithium-ion batteries // Applied Science. 2021. Vol. 11. Article number 10927. https://doi.org/10.3390/app112210927
- Jiang Y., Offer G., Jiang J., Marinescu M., Wang H. Voltage hysteresis model for silicon electrodes for lithium ion batteries, including multi-step phase transformations, crystallization and amorphization // Journal of the Electrochemical Society. 2020. Vol. 167. Article number 130533. https://doi.org/10.1149/1945-7111/abbbba
- Galashev A. Y., Vorob’ev A. S. First principle modeling of a silicene anode for lithium ion batteries // Electrochimical Acta. 2021. Vol. 378. Article number 138143. https://doi.org/10.1016/j.electacta.2021.138143
补充文件
