Probabilistic models of the capacity of the electrode material in a wide range of current loads
- Authors: Ushakov A.V.1, Rybakov K.S.1, Khrykina A.V.1, Gamayunova I.M.1
-
Affiliations:
- Saratov State University
- Issue: Vol 24, No 2 (2024)
- Pages: 59-75
- Section: Articles
- URL: https://journal-vniispk.ru/1608-4039/article/view/381224
- DOI: https://doi.org/10.18500/1608-4039-2024-24-2-59-75
- EDN: https://elibrary.ru/UYAMCU
- ID: 381224
Cite item
Full Text
Abstract
About the authors
Arseni Vladimirovich Ushakov
Saratov State University
ORCID iD: 0000-0003-0495-7750
SPIN-code: 6225-0061
83, Astrakhanskaya St., Saratov, 410012
Kirill Sergeevich Rybakov
Saratov State University
ORCID iD: 0000-0003-4821-2910
SPIN-code: 5334-5760
83, Astrakhanskaya St., Saratov, 410012
Anna V. Khrykina
Saratov State University
ORCID iD: 0000-0003-1198-0107
SPIN-code: 5258-7703
83, Astrakhanskaya St., Saratov, 410012
Irina Mikhailovna Gamayunova
Saratov State University83, Astrakhanskaya St., Saratov, 410012
References
- Potential Benefits of High-Power, HighCapacity Batteries (January 2020). United States Department of Energy. Washington, DC 20585. Available at: https://www.energy.gov/oe/downloads/potentialbenefits-high-power-high-capacity-batteries-january2020 (accessed Febrary 01, 2024).
- Bagotsky V. S. Fundamentals of Electrochemistry. 2nd ed. John Wiley & Sons, Inc., 2006. 722 p.
- Biesheuvel P. M., Dykstra J. E. Introduction to Physics of Electrochemical Processes. 2020. Available at: http://www.physicsofelectrochemicalprocesses.com (accessed Febrary 01, 2024).
- Biesheuvel P. M., Porada S., Dykstra J. E. The difference between Faradaic and non-Faradaic electrode processes. arXiv:1809.02930v4 [physics.chem-ph]. Available at: https://arxiv.org/pdf/1809.02930v4.pdf (accessed Febrary 01, 2024).
- Atkins P., De Paula J., Keeler J. Atkins’ physical chemistry. 11th ed. Oxford University Press, 2017, 928 p.
- Korovin N. V., Skundin A. M., eds. Khimicheskiye istochniki toka: spravochnik [Electrochemical Power Sources: handbook]. Moscow, MEI Publ., 2003. 740 p. (in Russian).
- Alviev Kh. Kh. The effect of discharge current upon battery capacity. Electrochemical Energetics, 2013, vol. 13, no. 4, pp. 225-227 (in Russian).
- Yazvinskaya N. N., Galushkin D. N., Galushkin N. E. Generalization of Peukert’s equation to build practical models of batteries. Izvestiya vuzov. Severo-kavkazskiy region. Technical Science, 2019, no. 2, pp. 60-68 (in Russian). https://doi.org/10.17213/0321-2653-2019-2-60-68
- Doyle M., Newman J. Analysis of capacity- rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997, vol. 27, pp. 846-856. https://doi.org/10.1023/A:1018481030499
- Lain M. J., Kendrick E. Understanding the limitations of lithium ion batteries at high rates. Journal of Power Sources, 2021, vol. 493, article no. 229690. https://doi.org/10.1016/j.jpowsour.2021.229690
- Heubner C., Schneider M., Michaelis A. Diffusion-Limited C-Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-Ion Batteries. Adv. Energy Mater., 2020, vol. 10, article no. 1902523. https://doi.org/10.1002/aenm.201902523
- Heubner C., Reuber S., Seeba J., Marcinkowski P., Nikolowski K., Schneider M., Wolter M., Michaelis A. Application-oriented modeling and optimization of tailored Li-ion batteries using the concept of Diffusion Limited C-rate. Journal of Power Sources, 2020, vol. 479, article no. 228704. https://doi.org/10.1016/j.jpowsour.2020.228704
- Heubner C., Nikolowski K., Reuber S., Schneider M., Wolter M., Michaelis A. Recent Insights into Rate Performance Limitations of Li-ion Batteries. Batteries & Supercaps, 2020, vol. 4, iss. 2, pp. 268-285. https://doi.org/10.1002/batt.202000227
- Parikh D., Christensen T., Li J. Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. Journal of Power Sources, 2020, vol. 474, article no. 228601. https://doi.org/10.1016/j.jpowsour.2020.228601
- Parikh D. Understanding the Limitations in Battery Components for Improving Energy Density under Extreme Fast Charging (XFC) Conditions, PhD diss., University of Tennessee, 2021. https://trace.tennessee.edu/utk_graddiss/6504 (accessed December 16, 2021).
- Wang F., Tang M. A Quantitative Analytical Model for Predicting and Optimizing the Rate Performance of Battery Cells. Cell Reports Physical Science, 2021, vol. 1, no. 9, article no. 100192. https://doi.org/10.1016/j.xcrp.2020.100192
- Mayilvahanan K. S., Hui Z., Hu K., Kuang J., McCarthy A. H., Bernard J., Wang L., Takeuchi K. J., Marschilok A. C., Takeuchi E. S., West A. C. Quantifying Uncertainty in Tortuosity Estimates for Porous Electrodes. Journal of The Electrochemical Society, 2021, vol. 168, no. 7, article no. 070537. https://dx.doi.org/10.1149/1945-7111/ac1316
- Weiss M., Ruess R., Kasnatscheew J., Levartovsky Y., Levy N. R., Minnmann P., Stolz L., Waldmann T., Wohlfahrt-Mehrens M., Aurbach D., Winter M., Ein-Eli Y., Janek J. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater., 2021, vol. 11, article no. 2101126. https://doi.org/10.1002/aenm.202101126
- Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochimica Acta, 2017, vol. 230, pp. 479-491. https://doi.org/10.1016/j.electacta.2017.02.009
- Ushakov A. V., Makhov S. V., Gridina N. A., Ivanishchev A. V., Gamayunova I. M. Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning. Monatshefte für Chemie - Chemical Monthly, 2019, vol. 150, pp. 499-509. https://doi.org/10.1007/s00706-019-2374-4
- Kornyshev A. A. Double-Layer in Ionic Liquids: Paradigm Change? J. Phys. Chem. B, 2007, vol. 111, pp. 5545-5557. https://doi.org/10.1021/jp067857o
- O’Hanlon S., McNultyD., Tian R., Coleman J., O’Dwyer C. High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of The Electrochemical Society, 2020, vol. 167, article no. 140532. https://doi.org/10.1149/1945-7111/abc6cb
- Tian R., Park S.-H., King P. J., Cunningham G., Coelho J., Nicolosi V., Coleman J. N. Quantifying the factors limiting rate performance in battery electrodes. Nature Communications, 2019, vol. 10, article no. 1933.
- Triola M. F., ed. Elementary statistics technology update. 12th ed. Pearson, 2016. 840 p.
- Lvovich V. F. Distributed Impedance Models. In: Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena. John Wiley & Sons, Inc., 2012. 368 p. https://doi.org/10.1002/9781118164075
- Bobyl A., Nam S.-C., Song J.-H., Ivanishchev A., Ushakov A. Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites. J. Electrochem. Sci. Technol., 2022, vol. 13, pp. 438-452. https://doi.org/10.33961/jecst.2022.00248
- Agafonov D., Bobyl A., Kamzin A., Nashchekin A., Ershenko E., Ushakov A., Kasatkin I., Levitskii V., Trenikhin M., Terukov E. Phase-Homogeneous LiFePO4 Powders with Crystallites Protected by Ferric-Graphite-Graphene Composite. Energies, 2023, vol. 16, no. 3, article no. 1551. https://doi.org/10.3390/en16031551
Supplementary files

