On degradation mechanism of lithium-sulfur batteries

Cover Page

Cite item

Full Text

Abstract

Using the method of normalized galvanostatic curves, as well as taking into account the changes in the half-charge and half-discharge potentials of an electrode, the latter based on a sulfur composite with reduced graphene oxide, it was established that the main reason for electrode degradation during cycling was the loss of active material (due to the shuttle transfer of polysulfides and sulfur from the positive electrode to the negative lithium one).

About the authors

Tat'yana L'vovna Kulova

National Research University “MPEI”; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: tkulova@mail.ru
ORCID iD: 0000-0002-5838-804X
SPIN-code: 1321-1818
Scopus Author ID: 6701624947
ResearcherId: J-8006-2013
Russian Federation, Moscow

Sergey A. Li

Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS

Email: li.sergey99@mail.ru
ORCID iD: 0000-0001-8832-8446
31, Leninsky Ave, Moscow, 119071

Aleksandr Mordukhaevich Skundin

Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS

Author for correspondence.
Email: askundin@mail.ru
ORCID iD: 0000-0001-7627-5703
SPIN-code: 7707-6164
Scopus Author ID: 7004327964
ResearcherId: A-8371-2014
31, Leninsky Ave, Moscow, 119071

References

  1. Колосницын В. С., Карасёва Е. В. Литий-серные аккумуляторы. Проблемы и решения // Электрохимия. 2008. Т. 44. С. 548−552.
  2. Ji X., Nazar L. F. Advances in Li–S batteries // J. Mater. Chem. 2010. Vol. 20. P. 9821–9826. https://doi.org/10.1039/B925751A
  3. Yang Y., Zheng G., Cui Y. Nanostructured sulfur cathodes // Chem. Soc. Rev. 2013. Vol. 42. P. 3018−3032. https://doi.org/10.1039/C2CS35256G
  4. Song M., Cairns E. J., Zhang Y. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities // Nanoscale. 2013. Vol. 5. P. 2186– 2204. https://doi.org/10.1039/C2NR33044J
  5. Manthiram A., Fu Y., Chung S.-H., Zu C., Su Y.-S., Rechargeable Lithium–Sulfur Batteries // Chem. Rev. 2014. Vol. 114. P. 11751−11787. https://doi.org/10.1021/cr500062v
  6. Wild M., O’Neill L., Zhang T., Purkayastha R., Minton G., Marinescu M., Offer G. J. Lithium sulfur batteries, a mechanistic review // Energy Environ. Sci. 2015. Vol. 8, iss. 12. P. 3477–3494. https://doi.org/10.1039/C5EE01388G
  7. Kang W., Deng N., Ju J., Li Q., Wu D., Ma X., Li L., Naebe M., Cheng B. A review of recent developments in rechargeable lithium–sulfur batteries // Nanoscale. 2016. Vol. 8. P. 16541−16588. https://doi.org/10.1039/C6NR04923K
  8. Li G., Wang S., Zhang Y., Li M., Chen Z., Lu J. Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries // Adv. Mater. 2018. Vol. 30. Art. 1705590. https://doi.org/10.1002/adma.201705590
  9. Zhu L., Zhang X., Zhang J., Ren H., Yao Y., Wang M., Song Y. A review on sulfurbased composite cathode materials for lithium-sulfur batteries: Progress and prospects // J. Alloys Compd. 2025. Vol. 1010. Art. 178282. https://doi.org/10.1016/j.jallcom.2024.178282
  10. Кулова Т. Л., Ли С. А., Рыжикова Е. В., Скундин А. М. Возможные причины деградации литий-серных аккумуляторов // Электрохимия. 2022. Т. 58. С. 203−210. https://doi.org/10.31857/S0424857022050085
  11. Ji L., Rao M., Zheng H., Zhang L., Li Y., Duan W., Guo J., Cairns E. J., Zhang Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells // J. Am. Chem. Soc. 2011. Vol. 133. P. 18522–18525. https://doi.org/10.1021/ja206955k
  12. Evers S., Nazar L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content // Chem. Commun. 2012. Vol. 48. P. 1233–1235. https://doi.org/10.1039/C2CC16726C
  13. Li N., Zheng M., Lu H., Hu Z., Shen C., Chang X., Ji G., Cao J., Shi Yi. High-rate lithium– sulfur batteries promoted by reduced graphene oxide coating // Chem. Commun. 2012. Vol. 48. P. 4106–4108. https://doi.org/10.1039/C2CC17912A
  14. Zhao M., Zhang Q., Huang J., Tian G., Nie J., Peng H., Wei F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries // Nat. Commun. 2014. Vol. 5. Art. 3410. https://doi.org/10.1038/ncomms4410
  15. Yu M., Wang A., Tian F., Song H., Wang Y., Li C., Hong J., Shi G. Dual-protection of a graphenesulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithiumsulfur battery // Nanoscale. 2015. Vol. 7. P. 5292–5298. https://doi.org/10.1039/C5NR00166H
  16. Кулова Т. Л., Скундин А. М. Простой метод диагностики причин деградации электродов при циклировании литий-ионных аккумуляторов // Электрохимическая энергетика. 2011. Т. 11, № 4. С. 171−178. https://doi.org/10.18500/1608-4039-2011-11-4-171-178

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).