On degradation mechanism of lithium-sulfur batteries
- Authors: Kulova T.L.1,2, Li S.A.3, Skundin A.M.3
-
Affiliations:
- National Research University “MPEI”
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
- Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
- Issue: Vol 25, No 2 (2025)
- Pages: 61-67
- Section: Articles
- URL: https://journal-vniispk.ru/1608-4039/article/view/381277
- DOI: https://doi.org/10.18500/1608-4039-2025-25-2-61-67
- EDN: https://elibrary.ru/AKBOXH
- ID: 381277
Cite item
Full Text
Abstract
Using the method of normalized galvanostatic curves, as well as taking into account the changes in the half-charge and half-discharge potentials of an electrode, the latter based on a sulfur composite with reduced graphene oxide, it was established that the main reason for electrode degradation during cycling was the loss of active material (due to the shuttle transfer of polysulfides and sulfur from the positive electrode to the negative lithium one).
About the authors
Tat'yana L'vovna Kulova
National Research University “MPEI”; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: tkulova@mail.ru
ORCID iD: 0000-0002-5838-804X
SPIN-code: 1321-1818
Scopus Author ID: 6701624947
ResearcherId: J-8006-2013
Russian Federation, Moscow
Sergey A. Li
Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Email: li.sergey99@mail.ru
ORCID iD: 0000-0001-8832-8446
31, Leninsky Ave, Moscow, 119071
Aleksandr Mordukhaevich Skundin
Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Author for correspondence.
Email: askundin@mail.ru
ORCID iD: 0000-0001-7627-5703
SPIN-code: 7707-6164
Scopus Author ID: 7004327964
ResearcherId: A-8371-2014
31, Leninsky Ave, Moscow, 119071
References
- Колосницын В. С., Карасёва Е. В. Литий-серные аккумуляторы. Проблемы и решения // Электрохимия. 2008. Т. 44. С. 548−552.
- Ji X., Nazar L. F. Advances in Li–S batteries // J. Mater. Chem. 2010. Vol. 20. P. 9821–9826. https://doi.org/10.1039/B925751A
- Yang Y., Zheng G., Cui Y. Nanostructured sulfur cathodes // Chem. Soc. Rev. 2013. Vol. 42. P. 3018−3032. https://doi.org/10.1039/C2CS35256G
- Song M., Cairns E. J., Zhang Y. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities // Nanoscale. 2013. Vol. 5. P. 2186– 2204. https://doi.org/10.1039/C2NR33044J
- Manthiram A., Fu Y., Chung S.-H., Zu C., Su Y.-S., Rechargeable Lithium–Sulfur Batteries // Chem. Rev. 2014. Vol. 114. P. 11751−11787. https://doi.org/10.1021/cr500062v
- Wild M., O’Neill L., Zhang T., Purkayastha R., Minton G., Marinescu M., Offer G. J. Lithium sulfur batteries, a mechanistic review // Energy Environ. Sci. 2015. Vol. 8, iss. 12. P. 3477–3494. https://doi.org/10.1039/C5EE01388G
- Kang W., Deng N., Ju J., Li Q., Wu D., Ma X., Li L., Naebe M., Cheng B. A review of recent developments in rechargeable lithium–sulfur batteries // Nanoscale. 2016. Vol. 8. P. 16541−16588. https://doi.org/10.1039/C6NR04923K
- Li G., Wang S., Zhang Y., Li M., Chen Z., Lu J. Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries // Adv. Mater. 2018. Vol. 30. Art. 1705590. https://doi.org/10.1002/adma.201705590
- Zhu L., Zhang X., Zhang J., Ren H., Yao Y., Wang M., Song Y. A review on sulfurbased composite cathode materials for lithium-sulfur batteries: Progress and prospects // J. Alloys Compd. 2025. Vol. 1010. Art. 178282. https://doi.org/10.1016/j.jallcom.2024.178282
- Кулова Т. Л., Ли С. А., Рыжикова Е. В., Скундин А. М. Возможные причины деградации литий-серных аккумуляторов // Электрохимия. 2022. Т. 58. С. 203−210. https://doi.org/10.31857/S0424857022050085
- Ji L., Rao M., Zheng H., Zhang L., Li Y., Duan W., Guo J., Cairns E. J., Zhang Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells // J. Am. Chem. Soc. 2011. Vol. 133. P. 18522–18525. https://doi.org/10.1021/ja206955k
- Evers S., Nazar L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content // Chem. Commun. 2012. Vol. 48. P. 1233–1235. https://doi.org/10.1039/C2CC16726C
- Li N., Zheng M., Lu H., Hu Z., Shen C., Chang X., Ji G., Cao J., Shi Yi. High-rate lithium– sulfur batteries promoted by reduced graphene oxide coating // Chem. Commun. 2012. Vol. 48. P. 4106–4108. https://doi.org/10.1039/C2CC17912A
- Zhao M., Zhang Q., Huang J., Tian G., Nie J., Peng H., Wei F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries // Nat. Commun. 2014. Vol. 5. Art. 3410. https://doi.org/10.1038/ncomms4410
- Yu M., Wang A., Tian F., Song H., Wang Y., Li C., Hong J., Shi G. Dual-protection of a graphenesulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithiumsulfur battery // Nanoscale. 2015. Vol. 7. P. 5292–5298. https://doi.org/10.1039/C5NR00166H
- Кулова Т. Л., Скундин А. М. Простой метод диагностики причин деградации электродов при циклировании литий-ионных аккумуляторов // Электрохимическая энергетика. 2011. Т. 11, № 4. С. 171−178. https://doi.org/10.18500/1608-4039-2011-11-4-171-178
Supplementary files

