Технологии искусственного интеллекта в медико-биологических исследованиях адаптации и дезадаптации человека к различным факторам среды
- Авторы: Балунов И.О.1, Михалищина А.С.2, Венерин А.А.2, Глазачев О.С.2
-
Учреждения:
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
- Первый Московский государственный медицинский университет им. И.М. Сеченова
- Выпуск: Том 32, № 1 (2025)
- Страницы: 7-19
- Раздел: ОБЗОРЫ
- URL: https://journal-vniispk.ru/1728-0869/article/view/314566
- DOI: https://doi.org/10.17816/humeco643537
- EDN: https://elibrary.ru/WCVHEG
- ID: 314566
Цитировать
Аннотация
Количество факторов внешней среды, воздействующих на человека одномоментно, чрезвычайно велико. Отслеживание их в динамике стало возможно благодаря развитию технологий искусственного интеллекта, включая алгоритмы машинного обучения, глубокого обучения и генеративный искусственный интеллект. Внедрение данного спектра технологических решений нового поколения в медико-биологические науки позволяет обнаруживать неявные взаимозависимости исследуемых элементов и процессов, упускаемые ранее. В контексте исследований механизмов адаптации и дезадаптации человека особое внимание следует уделить экзогенной гипоксии как одному из наиболее значимых факторов внешний среды, исследуемых в рамках экологии, физиологии и клинической медицины. Тема индивидуальных маркеров устойчивости человека к гипоксии до сих пор остаётся открытой и регулярно освещаемой в физиологических и патофизиологических работах. В последних методы машинного и глубокого обучения уже нашли широкое применение, включая анализ мультимодальных физиологических данных. Например, разработана модель машинного обучения, прогнозирующая развитие острой горной болезни с чувствительностью 0,998 и специфичностью 0,978. Для обучения модели использовались физиологические показатели испытуемых и климатические данные, фиксируемые в режиме реального времени. Таким образом, применение инструментов искусственного интеллекта для планирования научных исследований, обработки полученных данных и создания прогностических моделей существенно расширяет горизонт актуального понимания физиологических механизмов адаптации человека к гипоксии и позволяет на новом технологическом уровне подойти к анализу других факторов внешней среды.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Илья Олегович Балунов
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Email: ilya@balunov.com
ORCID iD: 0009-0006-3400-9523
SPIN-код: 3434-2440
Россия, Москва
Алина Сергеевна Михалищина
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: alina.mikhalishchina@gmail.com
ORCID iD: 0000-0003-4028-6405
SPIN-код: 2134-6830
Россия, Москва
Андрей Андреевич Венерин
Первый Московский государственный медицинский университет им. И.М. Сеченова
Автор, ответственный за переписку.
Email: venerin.andrey@gmail.com
ORCID iD: 0000-0002-8960-5772
SPIN-код: 8881-1892
Россия, Москва
Олег Станиславович Глазачев
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: glazachev@mail.ru
ORCID iD: 0000-0001-9960-6608
SPIN-код: 6168-2110
д-р мед. наук, профессор
Россия, МоскваСписок литературы
- Analytical report on the publication activity of Russian specialists at conferences in the field of artificial intelligence level A for the period from 2019 to 2023, part 1 (NCRII) [Internet]. Moscow: AI.GOV.RU; 2024 [cited 2025 Jan 24]. Available from: https://ai.gov.ru/knowledgebase/investitsionnaya-aktivnost/2024_analiticheskiy_otchet_po_publikacionnoy_aktivnosti_rossiyskih_specialistov_na_konferenciyah_v_oblasti_iskusstvennogo_intellekta_urovnya_a_za_period_s_2019_g_po_2023_g_chasty_1_ncrii/
- Babu M, Lautman Z, Lin X, et al. Wearable devices: implications for precision medicine and the future of health care. Annu Rev Med. 2024;75:401–415. doi: 10.1146/annurev-med-052422-020437
- SberMed. How digital physician assistants Top 3 and Aida help Moscow doctors [Internet]. 2023 Feb 9 [cited 2025 Jan 24]. Available from: https://sbermed.ai/kak-cifrovye-pomoschniki-vracha-top-3-i-aida-pomogayut-moskovskim-vracham
- Rashidi HH, Pantanowitz J, Chamanzar A, et al. Generative artificial intelligence in pathology and medicine: a deeper dive. Mod Pathol. 2025;38(4):100687. doi: 10.1016/j.modpat.2024.100687
- Boscardin CK, Gin B, Golde PB, Hauer KE. ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity. Acad Med. 2024;99(1):22–27. doi: 10.1097/ACM.0000000000005439
- Doron G, Genway S, Roberts M, Jasti S. Generative AI: driving productivity and scientific breakthroughs in pharmaceutical R&D. Drug Discov Today. 2025;30(1):104272. doi: 10.1016/j.drudis.2024.104272
- Mojadeddi ZM, Rosenberg J. AI in medical research. Ugeskr Laeger. 2024;186(16):V08230532. doi: 10.61409/V08230532
- Lenta.ru. Giga Chat passed the doctor's exam [Internet]. 2024 Feb 13 [cited 2025 Jan 24]. Available from: https://lenta.ru/news/2024/02/13/vracha/
- Ong CS, Burattini L, Schena S. Editorial: Artificial intelligence in human physiology. Front Physiol. 2022;13:1075819. doi: 10.3389/fphys.2022.1075819
- Cherkasov DYu, Ivanov VV. Machine learning. Science, Technology and Education. 2018;(5):85–87. EDN: XOPNID
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: 10.1038/nature14539
- Vaswani N, Shazeer N, Parmar J, et al. Attention is all you need. Neural Information Processing Systems. 2017;(30):5998–6008.
- Elyan E, Vuttipittayamongkol P, Johnston P, et al. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Art Int Surg. 2022;2:24–45. doi: 10.20517/ais.2021.15
- Kelly BS, Judge C, Bollard SM, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022;32(11):7998–8007. doi: 10.1007/s00330-022-08784-6
- Grzybowski A, Jin K, Zhou J, et al. Retina fundus photograph-based artificial intelligence algorithms in medicine: a systematic review. Ophthalmol Ther. 2024;13(8):2125–2149. doi: 10.1007/s40123-024-00981-4
- Beltrami EJ, Brown AC, Salmon PJM, et al. Artificial intelligence in the detection of skin cancer. J Am Acad Dermatol. 2022;87(6):1336–1342. doi: 10.1016/j.jaad.2022.08.028
- Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–e261. doi: 10.1016/S1470-2045(19)30154-8
- Hassan C, Spadaccini M, Iannone A, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93(1):77–85.e6. doi: 10.1016/j.gie.2020.06.059
- Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J. 2021;42(46):4717–4730. doi: 10.1093/eurheartj/ehab649
- Gusev AV, Artemova OR, Vasiliev YuA, Vladzymyrskyy AV. Integration of AI-based software as a medical device into Russian healthcare system: results of 2023. National Health Care (Russia). 2024;5(2):17–24. doi: 10.47093/2713-069X.2024.5.2.17-24
- Lee S, Kim HS. Prospect of artificial intelligence based on electronic medical record. J Lipid Atheroscler. 2021;10(3):282–290. doi: 10.12997/jla.2021.10.3.282
- Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. J Allergy Clin Immunol. 2020;145(2):463–469. doi: 10.1016/j.jaci.2019.12.897
- Datta S, Bernstam EV, Roberts K. A frame semantic overview of NLP-based information extraction for cancer-related EHR notes. J Biomed Inform. 2019;100:103301. doi: 10.1016/j.jbi.2019.103301
- Fu S, Lopes GS, Pagali SR, et al. Ascertainment of delirium status using natural language processing from electronic health records. J Gerontol A Biol Sci Med Sci. 2022;77(3):524–530. doi: 10.1093/gerona/glaa275
- Topol EJ. As artificial intelligence goes multimodal, medical applications multiply. Science. 2023;381(6663):adk6139. doi: 10.1126/science.adk6139
- Ralevski A, Taiyab N, Nossal M, et al. Using large language models to abstract complex social determinants of health from original and deidentified medical notes: development and validation study. J Med Internet Res. 2024;26:e63445. doi: 10.2196/63445
- Hwang Y, Cornman AL, Kellogg EH, et al. Genomic language model predicts protein co-regulation and function. Nat Commun. 2024;15(1):2880. doi: 10.1038/s41467-024-46947-9
- Rossi SH, Newsham I, Pita S, et al. Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker–driven learning framework. Sci Adv. 2022;8(39):eabn9828. doi: 10.1126/sciadv.abn9828
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
- Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w
- Singh S, Kaur N, Gehlot A. Application of artificial intelligence in drug design: A review. Comput Biol Med. 2024;179:108810. doi: 10.1016/j.compbiomed.2024.108810
- Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health. 2023;2(2):e0000198. doi: 10.1371/journal.pdig.0000198
- Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023;388(13):1233–1239. doi: 10.1056/NEJMsr2214184
- CNews. Sechenov University developed an algorithm for diagnosing cardiovascular diseases using artificial intelligence [Internet]. 2024 Dec 25 [cited 2025 Jan 24]. Available from: https://corp.cnews.ru/news/line/2024-12-25_sechenovskij_universitet
- Leo AJ, Schuelke MJ, Hunt DM, et al. Digital mental health intervention plus usual care compared with usual care only and usual care plus in-person psychological counseling for orthopedic patients with symptoms of depression or anxiety: cohort study. JMIR Form Res. 2022;6(5):e36203. doi: 10.2196/36203
- Wei Z, Iyer MR, Zhao B, et al. Artificial intelligence-assisted comparative analysis of the overlapping molecular pathophysiology of alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Int J Mol Sci. 2024;25(24):13450. doi: 10.3390/ijms252413450
- Asencio A, Malingen S, Kooiker KB, et al. Machine learning meets Monte Carlo methods for models of muscle’s molecular machinery to classify mutations. Journal of General Physiology. 2023;155(5):e202213291. doi: 10.1085/jgp.202213291
- Peng D, Yue H, Tan W, et al. A bimodal feature fusion convolutional neural network for detecting obstructive sleep apnea/hypopnea from nasal airflow and oximetry signals. Artif Intell Med. 2024;150:102808. doi: 10.1016/j.artmed.2024.102808
- Rush B, Celi LA, Stone DJ. Applying machine learning to continuously monitored physiological data. J Clin Monit Comput. 2019;33(5):887–893. doi: 10.1007/s10877-018-0219-z
- Cai S, Li H, Zheng F, et al. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci. 2021;118(13):e2100697118. doi: 10.1073/pnas.2100697118
- Soulage CO, Van Coppenolle F, Guebre-Egziabher F. The conversational AI “ChatGPT” outperforms medical students on a physiology university examination. Adv Physiol Educ. 2024;48(4):677–684. doi: 10.1152/advan.00181.2023
- Favero TG. Using artificial intelligence platforms to support student learning in physiology. Adv Physiol Educ. 2024;48(2):193–199. doi: 10.1152/advan.00213.2023
- Pereira MMCE, Padez CMP, Nogueira HGDSM. Describing studies on childhood obesity determinants by Socio-Ecological Model level: a scoping review to identify gaps and provide guidance for future research. Int J Obes. 2019;43(10):1883–1890. doi: 10.1038/s41366-019-0411-3
- Allen B, Lane M, Steeves EA, Raynor H. Using explainable artificial intelligence to discover interactions in an ecological model for obesity. Int J Environ Res Public Health. 2022;19(15):9447. doi: 10.3390/ijerph19159447
- Ojha KV, Griego DM, Kuliga S, et al. Machine learning approaches to understand the influence of urban environments on human´s physiological response. Information Sciences, 2019;474:154–169. doi: 10.1016/j.ins.2018.09.061
- Wei CY, Chen PN, Lin SS, et al. Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute mountain sickness. BMC Bioinformatics. 2021;22(Suppl 5):628. doi: 10.1186/s12859-022-04749-0
- Shen Y, Liu C, He H, et al. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. Biosensors (Basel). 2022;12(12):1164. doi: 10.3390/bios12121164
- Kimball JP, Inan OT, Convertino VA, et al. Wearable sensors and machine learning for hypovolemia problems in occupational, military and sports medicine: physiological basis, hardware and algorithms. Sensors. 2022;22(2):442. doi: 10.3390/s22020442
- Westphal A, Mrowka R. Special issue European Journal of Physiology: Artificial intelligence in the field of physiology and medicine. Pflugers Arch. 2025;477(4):509–512. doi: 10.1007/s00424-025-03071-x
- Han J, Liu M, Shi J, Li Y. Construction of a machine learning model to estimate physiological variables of speed skating athletes under hypoxic training conditions. J Strength Cond Res. 2023;37(7):1543–1550. doi: 10.1519/JSC.0000000000004058
- Snider DH, Linnville SE, Phillips JB, Rice GM. Predicting hypoxic hypoxia using machine learning and wearable sensors. Biomed Signal Process Control. 2022;71:103110. doi: 10.1016/j.bspc.2021.103110
- Mazing MS, Zaitceva AY, Davydov RV. Application of the Kohonen neural network for monitoring tissue oxygen supply under hypoxic conditions. J Phys. 2021;2086:012116. doi: 10.1088/1742-6596/2086/1/012116
- Dzhalilova D, Makarova O. Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics. Biomedicines. 2020;8(10):428. doi: 10.3390/biomedicines8100428
- Leveque C, Mrakic Sposta S, Theunissen S, et al. Oxidative stress response kinetics after 60 minutes at different levels (10% or 15%) of normobaric hypoxia exposure. Int J Mol Sci. 2023;24(12):10188. doi: 10.3390/ijms241210188
- Zembron-Lacny A, Tylutka A, Wacka E, et al. Intermittent hypoxic exposure reduces endothelial dysfunction. Biomed Res Int. 2020;2020:6479630. doi: 10.1155/2020/6479630
- Hafner S, Beloncle F, Koch A, et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 2015;5(1):42. doi: 10.1186/s13613-015-0084-6
- Gorni D, Finco A. Oxidative stress in elderly population: A prevention screening study. Aging Medicine. 2020;3(3):205–213. doi: 10.1002/agm2.12121
Дополнительные файлы
