Artificial intelligence technologies in biomedical research on human adaptation and maladaptation to environmental factors
- Authors: Balunov I.O.1, Mikhalishchina A.S.2, Venerin A.А.2, Glazachev O.S.2
-
Affiliations:
- N.I. Pirogov Russian National Research Medical University
- I.M. Sechenov First Moscow State Medical University
- Issue: Vol 32, No 1 (2025)
- Pages: 7-19
- Section: REVIEWS
- URL: https://journal-vniispk.ru/1728-0869/article/view/314566
- DOI: https://doi.org/10.17816/humeco643537
- EDN: https://elibrary.ru/WCVHEG
- ID: 314566
Cite item
Abstract
The number of environmental factors simultaneously affecting the human body is extremely large. Tracking these factors in time has become possible thanks to the development of artificial intelligence technologies, including machine learning algorithms, deep learning algorithms, and generative artificial intelligence. The integration of this new generation of technological solutions into biomedical sciences enables the identification of hidden interdependencies among studied elements and processes that were previously overlooked. In the context of research on the mechanisms of human adaptation and maladaptation, special attention should be given to exogenous hypoxia as one of the most significant environmental factors studied within ecology, physiology, and clinical medicine. The topic of individual markers of human resistance to hypoxia remains open and is regularly addressed in physiological and pathophysiological works. In recent works, methods of machine and deep learning have already found wide application, including the analysis of multimodal physiological data. For example, a machine learning model has been developed to predict the development of acute mountain sickness with a sensitivity of 0.998 and a specificity of 0.978. The model was trained using physiological indicators of test subjects and real-time climate data. Thus, the application of artificial intelligence tools for scientific research planning, data processing, and the creation of predictive models significantly expands the current understanding of physiological mechanisms of human adaptation to hypoxia and enables the analysis of other environmental factors to be carried out at a new technological level.
Full Text
##article.viewOnOriginalSite##About the authors
Ilya O. Balunov
N.I. Pirogov Russian National Research Medical University
Email: ilya@balunov.com
ORCID iD: 0009-0006-3400-9523
SPIN-code: 3434-2440
Russian Federation, Moscow
Alina S. Mikhalishchina
I.M. Sechenov First Moscow State Medical University
Email: alina.mikhalishchina@gmail.com
ORCID iD: 0000-0003-4028-6405
SPIN-code: 2134-6830
Russian Federation, Moscow
Andrey А. Venerin
I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: venerin.andrey@gmail.com
ORCID iD: 0000-0002-8960-5772
SPIN-code: 8881-1892
Russian Federation, Moscow
Oleg S. Glazachev
I.M. Sechenov First Moscow State Medical University
Email: glazachev@mail.ru
ORCID iD: 0000-0001-9960-6608
SPIN-code: 6168-2110
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowReferences
- Analytical report on the publication activity of Russian specialists at conferences in the field of artificial intelligence level A for the period from 2019 to 2023, part 1 (NCRII) [Internet]. Moscow: AI.GOV.RU; 2024 [cited 2025 Jan 24]. Available from: https://ai.gov.ru/knowledgebase/investitsionnaya-aktivnost/2024_analiticheskiy_otchet_po_publikacionnoy_aktivnosti_rossiyskih_specialistov_na_konferenciyah_v_oblasti_iskusstvennogo_intellekta_urovnya_a_za_period_s_2019_g_po_2023_g_chasty_1_ncrii/
- Babu M, Lautman Z, Lin X, et al. Wearable devices: implications for precision medicine and the future of health care. Annu Rev Med. 2024;75:401–415. doi: 10.1146/annurev-med-052422-020437
- SberMed. How digital physician assistants Top 3 and Aida help Moscow doctors [Internet]. 2023 Feb 9 [cited 2025 Jan 24]. Available from: https://sbermed.ai/kak-cifrovye-pomoschniki-vracha-top-3-i-aida-pomogayut-moskovskim-vracham
- Rashidi HH, Pantanowitz J, Chamanzar A, et al. Generative artificial intelligence in pathology and medicine: a deeper dive. Mod Pathol. 2025;38(4):100687. doi: 10.1016/j.modpat.2024.100687
- Boscardin CK, Gin B, Golde PB, Hauer KE. ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity. Acad Med. 2024;99(1):22–27. doi: 10.1097/ACM.0000000000005439
- Doron G, Genway S, Roberts M, Jasti S. Generative AI: driving productivity and scientific breakthroughs in pharmaceutical R&D. Drug Discov Today. 2025;30(1):104272. doi: 10.1016/j.drudis.2024.104272
- Mojadeddi ZM, Rosenberg J. AI in medical research. Ugeskr Laeger. 2024;186(16):V08230532. doi: 10.61409/V08230532
- Lenta.ru. Giga Chat passed the doctor's exam [Internet]. 2024 Feb 13 [cited 2025 Jan 24]. Available from: https://lenta.ru/news/2024/02/13/vracha/
- Ong CS, Burattini L, Schena S. Editorial: Artificial intelligence in human physiology. Front Physiol. 2022;13:1075819. doi: 10.3389/fphys.2022.1075819
- Cherkasov DYu, Ivanov VV. Machine learning. Science, Technology and Education. 2018;(5):85–87. EDN: XOPNID
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: 10.1038/nature14539
- Vaswani N, Shazeer N, Parmar J, et al. Attention is all you need. Neural Information Processing Systems. 2017;(30):5998–6008.
- Elyan E, Vuttipittayamongkol P, Johnston P, et al. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Art Int Surg. 2022;2:24–45. doi: 10.20517/ais.2021.15
- Kelly BS, Judge C, Bollard SM, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022;32(11):7998–8007. doi: 10.1007/s00330-022-08784-6
- Grzybowski A, Jin K, Zhou J, et al. Retina fundus photograph-based artificial intelligence algorithms in medicine: a systematic review. Ophthalmol Ther. 2024;13(8):2125–2149. doi: 10.1007/s40123-024-00981-4
- Beltrami EJ, Brown AC, Salmon PJM, et al. Artificial intelligence in the detection of skin cancer. J Am Acad Dermatol. 2022;87(6):1336–1342. doi: 10.1016/j.jaad.2022.08.028
- Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–e261. doi: 10.1016/S1470-2045(19)30154-8
- Hassan C, Spadaccini M, Iannone A, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93(1):77–85.e6. doi: 10.1016/j.gie.2020.06.059
- Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J. 2021;42(46):4717–4730. doi: 10.1093/eurheartj/ehab649
- Gusev AV, Artemova OR, Vasiliev YuA, Vladzymyrskyy AV. Integration of AI-based software as a medical device into Russian healthcare system: results of 2023. National Health Care (Russia). 2024;5(2):17–24. doi: 10.47093/2713-069X.2024.5.2.17-24
- Lee S, Kim HS. Prospect of artificial intelligence based on electronic medical record. J Lipid Atheroscler. 2021;10(3):282–290. doi: 10.12997/jla.2021.10.3.282
- Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. J Allergy Clin Immunol. 2020;145(2):463–469. doi: 10.1016/j.jaci.2019.12.897
- Datta S, Bernstam EV, Roberts K. A frame semantic overview of NLP-based information extraction for cancer-related EHR notes. J Biomed Inform. 2019;100:103301. doi: 10.1016/j.jbi.2019.103301
- Fu S, Lopes GS, Pagali SR, et al. Ascertainment of delirium status using natural language processing from electronic health records. J Gerontol A Biol Sci Med Sci. 2022;77(3):524–530. doi: 10.1093/gerona/glaa275
- Topol EJ. As artificial intelligence goes multimodal, medical applications multiply. Science. 2023;381(6663):adk6139. doi: 10.1126/science.adk6139
- Ralevski A, Taiyab N, Nossal M, et al. Using large language models to abstract complex social determinants of health from original and deidentified medical notes: development and validation study. J Med Internet Res. 2024;26:e63445. doi: 10.2196/63445
- Hwang Y, Cornman AL, Kellogg EH, et al. Genomic language model predicts protein co-regulation and function. Nat Commun. 2024;15(1):2880. doi: 10.1038/s41467-024-46947-9
- Rossi SH, Newsham I, Pita S, et al. Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker–driven learning framework. Sci Adv. 2022;8(39):eabn9828. doi: 10.1126/sciadv.abn9828
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
- Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w
- Singh S, Kaur N, Gehlot A. Application of artificial intelligence in drug design: A review. Comput Biol Med. 2024;179:108810. doi: 10.1016/j.compbiomed.2024.108810
- Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health. 2023;2(2):e0000198. doi: 10.1371/journal.pdig.0000198
- Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023;388(13):1233–1239. doi: 10.1056/NEJMsr2214184
- CNews. Sechenov University developed an algorithm for diagnosing cardiovascular diseases using artificial intelligence [Internet]. 2024 Dec 25 [cited 2025 Jan 24]. Available from: https://corp.cnews.ru/news/line/2024-12-25_sechenovskij_universitet
- Leo AJ, Schuelke MJ, Hunt DM, et al. Digital mental health intervention plus usual care compared with usual care only and usual care plus in-person psychological counseling for orthopedic patients with symptoms of depression or anxiety: cohort study. JMIR Form Res. 2022;6(5):e36203. doi: 10.2196/36203
- Wei Z, Iyer MR, Zhao B, et al. Artificial intelligence-assisted comparative analysis of the overlapping molecular pathophysiology of alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Int J Mol Sci. 2024;25(24):13450. doi: 10.3390/ijms252413450
- Asencio A, Malingen S, Kooiker KB, et al. Machine learning meets Monte Carlo methods for models of muscle’s molecular machinery to classify mutations. Journal of General Physiology. 2023;155(5):e202213291. doi: 10.1085/jgp.202213291
- Peng D, Yue H, Tan W, et al. A bimodal feature fusion convolutional neural network for detecting obstructive sleep apnea/hypopnea from nasal airflow and oximetry signals. Artif Intell Med. 2024;150:102808. doi: 10.1016/j.artmed.2024.102808
- Rush B, Celi LA, Stone DJ. Applying machine learning to continuously monitored physiological data. J Clin Monit Comput. 2019;33(5):887–893. doi: 10.1007/s10877-018-0219-z
- Cai S, Li H, Zheng F, et al. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci. 2021;118(13):e2100697118. doi: 10.1073/pnas.2100697118
- Soulage CO, Van Coppenolle F, Guebre-Egziabher F. The conversational AI “ChatGPT” outperforms medical students on a physiology university examination. Adv Physiol Educ. 2024;48(4):677–684. doi: 10.1152/advan.00181.2023
- Favero TG. Using artificial intelligence platforms to support student learning in physiology. Adv Physiol Educ. 2024;48(2):193–199. doi: 10.1152/advan.00213.2023
- Pereira MMCE, Padez CMP, Nogueira HGDSM. Describing studies on childhood obesity determinants by Socio-Ecological Model level: a scoping review to identify gaps and provide guidance for future research. Int J Obes. 2019;43(10):1883–1890. doi: 10.1038/s41366-019-0411-3
- Allen B, Lane M, Steeves EA, Raynor H. Using explainable artificial intelligence to discover interactions in an ecological model for obesity. Int J Environ Res Public Health. 2022;19(15):9447. doi: 10.3390/ijerph19159447
- Ojha KV, Griego DM, Kuliga S, et al. Machine learning approaches to understand the influence of urban environments on human´s physiological response. Information Sciences, 2019;474:154–169. doi: 10.1016/j.ins.2018.09.061
- Wei CY, Chen PN, Lin SS, et al. Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute mountain sickness. BMC Bioinformatics. 2021;22(Suppl 5):628. doi: 10.1186/s12859-022-04749-0
- Shen Y, Liu C, He H, et al. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. Biosensors (Basel). 2022;12(12):1164. doi: 10.3390/bios12121164
- Kimball JP, Inan OT, Convertino VA, et al. Wearable sensors and machine learning for hypovolemia problems in occupational, military and sports medicine: physiological basis, hardware and algorithms. Sensors. 2022;22(2):442. doi: 10.3390/s22020442
- Westphal A, Mrowka R. Special issue European Journal of Physiology: Artificial intelligence in the field of physiology and medicine. Pflugers Arch. 2025;477(4):509–512. doi: 10.1007/s00424-025-03071-x
- Han J, Liu M, Shi J, Li Y. Construction of a machine learning model to estimate physiological variables of speed skating athletes under hypoxic training conditions. J Strength Cond Res. 2023;37(7):1543–1550. doi: 10.1519/JSC.0000000000004058
- Snider DH, Linnville SE, Phillips JB, Rice GM. Predicting hypoxic hypoxia using machine learning and wearable sensors. Biomed Signal Process Control. 2022;71:103110. doi: 10.1016/j.bspc.2021.103110
- Mazing MS, Zaitceva AY, Davydov RV. Application of the Kohonen neural network for monitoring tissue oxygen supply under hypoxic conditions. J Phys. 2021;2086:012116. doi: 10.1088/1742-6596/2086/1/012116
- Dzhalilova D, Makarova O. Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics. Biomedicines. 2020;8(10):428. doi: 10.3390/biomedicines8100428
- Leveque C, Mrakic Sposta S, Theunissen S, et al. Oxidative stress response kinetics after 60 minutes at different levels (10% or 15%) of normobaric hypoxia exposure. Int J Mol Sci. 2023;24(12):10188. doi: 10.3390/ijms241210188
- Zembron-Lacny A, Tylutka A, Wacka E, et al. Intermittent hypoxic exposure reduces endothelial dysfunction. Biomed Res Int. 2020;2020:6479630. doi: 10.1155/2020/6479630
- Hafner S, Beloncle F, Koch A, et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 2015;5(1):42. doi: 10.1186/s13613-015-0084-6
- Gorni D, Finco A. Oxidative stress in elderly population: A prevention screening study. Aging Medicine. 2020;3(3):205–213. doi: 10.1002/agm2.12121
Supplementary files
