Quantitative microbial risk assessment for drinking water-associated population

Cover Page

Cite item

Full Text

Abstract

The risk assessment method is used to study the probability of adverse public health outcomes when using contaminated drinking water, with acute intestinal infections representing a predominant concern. A quantitative microbial risk assessment is a mathematical system designed to calculate the probability of the development of the infectious diseases caused by the pathogenic microorganisms present in drinking water. The microbial risk assessment method integrates epidemiological and sanitary-hygienic monitoring data to calculate the risk of water-associated diseases. This method aims to identify and mitigate the risk of the waterborne outbreaks of infectious diseases and reducing the prevalence sporadic (background) infections caused by water-transmitted pathogens. As a result of the aforementioned method and the availability of online calculators, researchers now can utilize a tool for calculating the probability and risk of occurrence of infectious diseases when using low microbial quality drinking water. This review presents the stages of the microbial risk quantitative assessment with a description of the calculation methods, describes the sources of the data necessary to assess the risk, presents the formulas for calculating the probability depending on the type of infectious pathogen, and provides the links to online calculators allowing for quick calculations.

About the authors

Elena V. Baydakova

Federal Agency of Consumer Protection; Northern State Medical University

Author for correspondence.
Email: elenabaydakova@yandex.ru
ORCID iD: 0000-0002-1570-6589
SPIN-code: 3398-3669
Russian Federation, Arkhangelsk; Arkhangelsk

Tatiana N. Unguryanu

Northern State Medical University

Email: unguryanu_tn@mail.ru
ORCID iD: 0000-0001-8936-7324
SPIN-code: 7358-1674

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Arkhangelsk

References

  1. Soloviev MYu, Konchenko AV, Kurashvili OM, Mikheeva IV. Influence of drinking water quality on the health status of the population of the cities of the Rostov region. Public Health and Life Environment. 2009;(3):44–46. (In Russ.) EDN: MUSDZL
  2. Figurina TI, Shadrina SU, Karlova TV, Rodina AO. Evaluation of risk of household-drinking water supply of Vologda region population. Herald of the Mechnikov Saint-Petersburg State Medical Academy. 2009;(2):70–73. EDN: NSJXPB
  3. Grandjean D, Jorand F, Yañez C, et al. Influence of lepidocrocite (γ-FeOOH) on Escherichia Coli cultivability in drinking water. Environmental Technology. 2005;26(2):211–217. doi: 10.1080/09593332608618577
  4. Quantitative Microbial Risk Assessment, QMRA: Application for Water Safety Management [cited 2024 Jun 01]. Available from: https://www.who.int/publications/i/item/9789241565370
  5. Ahmed W, Hamilton K, Toze S, et al. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. Science of the Total Environment Journal. 2020;692:1304–1321. doi: 10.1016/j.scitotenv.2019.07.055
  6. Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015;2(1):95–106. doi: 10.1007/s40572-014-0037-5
  7. Ramírez-Castillo FY, Loera-Muro A, Jacques M, et al. Waterborne pathogens: detection methods and challenges. Pathogens. 2015;4(2):307–334. doi: 10.3390/pathogens4020307
  8. Methodological recommendations MP 2.1.10.0067-12 “Assessment of the risk to public health when exposed to microbial factors contained in food products. Methodological foundations, principles and evaluation criteria” [cited 2024 Oct 01]. Available from: https://www.garant.ru/products/ipo/prime/doc/70118360 (In Russ.)
  9. Methodological recommendations of MP 2.1.10.0031-11. “Comprehensive assessment of the risk of bacterial intestinal infections transmitted by water. Methodological recommendations” [cited 2024 Oct 01]. Available from: http://base.garant.ru/70105056 (In Russ.)
  10. Dalahmeh SS, Lalander C, Pell M, et al. Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation. Journal of Applied Microbiology. 2016;121(5):1427–1443. doi: 10.1111/jam.13273
  11. Anastasopoulou A, Kolios A, Somorin T, et al. Conceptual environmental impact assessment of a novel self-sustained sanitation system incorporating a quantitative microbial risk assessment approach. Science of the Total Environment. 2018;639:657–672. doi: 10.1016/j.scitotenv.2018.05.062
  12. Petterson SR. Application of a QMRA Framework to Inform Selection of Drinking Water Interventions in the Developing Context. Risk Anal. 2016;36(2):203–214. doi: 10.1111/risa.12452
  13. Duizer E, Rutjes S, de Roda Husman AM, Schijven J. Risk assessment, risk management and risk-based monitoring following a reported accidental release of poliovirus in Belgium, September to November 2014. Euro Surveill. 2016;21(11):30169. doi: 10.2807/1560-7917.ES.2016.21.11.30169
  14. Zagainova AV, Trukhina GM, Rakhmanin YuA, et al. The rationale for introducing the indices “generalized coliform bacteria” and “Escherichia coli” into the scheme of sanitary and microbiological control of water quality as indices of fecal contamination. Hygiene and Sanitation. 2020;99(12):1353–1359. EDN: HWXNYA doi: 10.47470/0016-9900-2020-99-12-1353-1359
  15. Gavini F, Leclerc H, Mossel DA. Enterobacteriaceae of the “coliform group” in drinking water: Identification and worldwide distribution. Systematic and Applied Microbiology. 1985;6: 312–318.
  16. Byappanahalli MN, Nevers MB, Korajkic A. Enterococci in the environment. Microbiology and Molecular Biology Reviews. 2012;76(4):685–706. doi: 10.1128/mmbr.00023-12
  17. Rodrigues C, Cunha MÂ. Assessment of the microbiological quality of recreational waters: indicators and methods. Euro-Mediterranean Journal for Environmental Integration. 2017;2:25. doi: 10.1007/s41207-017-0035-8
  18. EPA’s Exposure Factors Handbook (EFH) [cited 2024 Jun 01] Available from: https://www.epa.gov/expobox/about-exposure-factors-handbook
  19. Ward RL, Bernstein DI, Young EC, et al. Human rotavirus studies in volunteers: determination of infectious dose and serological response to infection. Journal of Infectious Diseases. 1986;154(5):871–880. doi: 10.1093/infdis/154.5.871
  20. Cliver DO. Experimental infection by waterborne enteroviruses. Journal of Food Protection. 1981;44(11):861–865. doi: 10.4315/0362-028X-44.11.861
  21. DuPont HL, Hornick RB, Snyder MJ, et al. Immunity in shigellosis. I. Response of man to attenuated strains of Shigella. Journal of Infectious Diseases. 1972;125(1):5–11. doi: 10.1093/infdis/125.1.5
  22. Dupont HL, Formal SB, Hornick RB, et al. Pathogenesis of Escherichia coli diarrhea. The New England Journal of Medicine. 1971;285(1):1–9. doi: 10.1056/NEJM197107012850101
  23. Teunis PF, Moe CL, Liu P, et al. Norwalk virus: How infectious is it? Journal of Medical Virology. 2008;80(8):1468–1476. doi: 10.1002/jmv.21237
  24. SanPiN 2.1.3684-21 “Sanitary and epidemiological requirements for the maintenance of urban and rural settlements, for water bodies, drinking water and drinking water supply, atmospheric air, soils, residential premises, operation of industrial and public premises, organization and conduct of sanitary and anti-epidemic (preventive) measures. Sanitary and epidemiological rules and regulations” [cited 2022 Nov 01]. Available from: https://base.garant.ru/400289764 (In Russ.)
  25. SanPiN 3.3686-21 “Sanitary and epidemiological requirements for the prevention of infectious diseases. Sanitary and epidemiological rules and regulations” [cited 2021 Nov 01]. Available from: https://base.garant.ru/400342149 (In Russ.)
  26. Prevention of infectious diseases. Organization of work in foci of infectious and parasitic diseases: Methodological guidelines of MU 3.1.3114/1-13. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor; 2013. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Link for Linux OS.

Download (10KB)
3. Fig. 2. Link for Windows OS.

Download (10KB)
4. Fig. 3. An example of a dose calculation, probability of occurrence and risk coefficient using the online calculator “Quantitative microbiological risk assessment”.

Download (44KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».